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ABSTRACT 

STATISTICAL METHODS FOR MODELING HOUSE PRICES AND INDICES 

Chaitra Haikady Nagaraja 

Lawrence D. Brown 

Repeat sales techniques are a common approach for modeling house prices. This method­

ology presumes the previous sale price acts as a proxy for hedonic variables, such as size and 

number of bedrooms. Capturing the spirit of the repeat sales setup, the proposed model 

includes the previous price as a predictor of current price. However, the model also includes 

an adjustment so that the more time which has elapsed between sales, the less useful the 

previous price becomes. To incorporate this property into the model framework, a two-part, 

nonlinear model is proposed which consists of a general price index and an autoregressive 

component (AR). The latter element can be thought of as the result of a latent AR(1) 

process for each house which is observed only in time periods when sales occur. In the 

fitting process, all sales contribute to estimating the time effect but only repeat sales factor 

in the autoregressive coefficient estimate. The resulting index, constructed from the time 

effects, is therefore more representative of the housing market compared to existing repeat 

sales models which ignore single sales. Moreover, the proposed model outperforms bench­

mark models including the S&P/Case-Shiller® model in terms of predictive power when 

applied to single-family home sales from July 1985 through September 2004 for twenty U.S. 

metropolitan areas. Finally, an extension to this model is proposed to incorporate local ef­

fects. Here, zip code is introduced to the model as a random effect. Predictive performance 

is further improved with this addition. 
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Chapter 1 

Introduction 

Analyzing housing markets is a challenging task; each house is unique involving a collection 

of many attributes such as size, location, and amenities. The value of these characteristics 

is difficult to determine, especially in the presence of a lack of da ta availability. Moreover, 

not every house is sold at each time period which adds further complexity. As a result, the 

visible market is only a small subset of the entire population of homes. Prom this sample, 

models are developed to both predict individual house prices and construct a price index. 

For the latter, the goal is to aggregate information across all home sales to provide an idea 

of how prices change over time. These changes can often be applied to help assess the 

expected change in a home's price and for other economic purposes. 

A common approach to modeling house prices is to use homes tha t sell multiple times 

to track overall market trends. The repeat sales method 'was first proposed by Bailey, 

Muth, and Nourse (BMN) to construct a house price index using price differences between 

two successive sales of a home. In this setting, the previous sale price is assumed to be 

a surrogate for house characteristics provided tha t the home is unchanged between sales. 

1 
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Existing repeat sales methods utilize only repeat sales homes; all single sales are ignored. 

As a result, repeat sales indices are often criticized as being unrepresentative of the housing 

market. 

We utilize the idea that repeat sales homes contain additional information about the 

market in the autoregressive model introduced in Chapter 3. We compute a separate model 

for each metropolitan area in our data. Other units of geography are feasible and we later 

consider this issue. 

Specifically, the log price yij of the j th sale of the ith house is modeled as: 

Vi,i = A(i,i) + £i,i for initial sales (j = 1) 

Vi,j = Pt(i,j) + 0 7 ( M ) ( ? / ; , J - I - % , j - i ) ) + £i,j for subsequent sales (j > 1) 

where t(i,j) is the time of the sale given in quarter units and 7(i , j) is the gap time be­

tween sales. We define yij — A(jj) to be the quarter-adjusted log sale price. The random 

variation for the initial sale has distribution, s^i ~ A/* (0, jz^z) a n ( i f° r subsequent sales, 

£i,j ~ A/" I 0, e
 l_,i ) where M (̂ x, a2) denotes a normal distribution with mean [i and 

variance a2 and "iid" stands for independent and identically distributed. In a sense to be 

later explained, this structure produces a stationary quarter-adjusted log price series. 

A key feature of this model is that it handles houses differently based on the gap time 

between sales. We expect the sale price of a home to be less informative if the sale occurred a 

long time ago. This belief has a two-fold impact on the model. First, the model forces prices 

for pairs of sales with long gap times to be less correlated. This is because the autoregressive 

coefficient applied to a pair of sales depends on the gap time ((fi^'ft). Second, the variance 

of e,j increases with gap time. Therefore, information contained in the previous sale price 

becomes less valuable as time passes. 

2 
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Unlike existing repeat sales methods, all sales are used to construct the index and thus, 

we believe, captures trends in the overall housing market better. As we will show, the log 

price index can be thought of as a weighted average of single and repeat sales where the 

latter are assigned higher weights. 

The autoregressive model is fitted using maximum likelihood techniques for single-family 

home sales from July 1985 through September 2004 in twenty US metropolitan areas. For 

comparison, three alternative models are fitted as well: a fixed effects model, a mixed effects 

model, and a model based on the S&P/Case-Shiller® method. When comparing predictive 

performance on test samples of individual sales, the autoregressive model performs best for 

seventeen out of twenty cities. 

In Chapter 6, we investigate models that incorporate spatial information. To this end, 

we divide each metropolitan area into regions by zip code. The zip codes are modeled as 

random effects and are added to the global autoregressive model. The resulting model can 

be described as follows. Let yijjZ be the j th log price of the ith house in zip code z. As 

before, let f3\,..., (5T denote the fixed, log price indices. The extra term is the zip code, rz 

where rz ~ J\f (0, <r^). Introducing the random effect term requires the addition of /x, which 

can be interpreted as the overall mean log price if we require Y2t=i n*<̂ t ~ 0 where nt is the 

number of sales at time t. Then, the model is: 

Vi,\,z = M + Pt(i,l,z) +TZ + EiXz j = 1 

ViJ,z = M + Pt(i,j,z) +1~z + (p^hj'^ {yi,j-l,z - fJ- - Pt(i,j-l,z) - Tz) + £i,j,z 3 > 1 

where e^z % M (o, ^ ) , eid,z ~ M (o, d ( l _ ^ ^ A w h e r e j > L 

We use maximum likelihood estimation again to fit the local model to each of the twenty 

cities. As a benchmark model, we fit a mixed effects model which also models zip code as a 

random effect but omits the autoregressive factor. The local autoregressive model has even 

3 
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better predictions than both the benchmark mixed effects model and the global models 

examined earlier for most cities. 

We now provide a brief overview of the subsequent chapters. In Chapter 2, we describe 

our data and present some summary statistics for the twenty US metropolitan areas. The 

global autoregressive model is introduced in Chapter 3. We also review basic results for 

autoregressive time series and outline the coordinate ascent algorithm used to fit the model. 

A review of existing housing literature is provided in Chapter 4. Four types of models are 

discussed: hedonic, repeat sales, hybrid, and spatial models; however, we focus on repeat 

sales models. We end the chapter with a summary of commercial indices in the US and the 

UK. Results for the global autoregressive model are analyzed in Chapter 5. The case of Los 

Angeles, CA, for which the model performs relatively poorly, is examined. Local models 

are investigated in Chapter 6 and results are provided in Chapter 7. Finally, future work is 

outlined Chapter 8. 

4 
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Chapter 2 

Data 

The data are comprised of single family home sales from the twenty US metropolitan areas 

listed in Table 2.1. These sales occurred between July 1985 and September 2004 and were 

for homes which qualified for conventional mortgages. For each observation, the following 

information is available: address, month and year of sale, price, ZIP code, ZIP+4, and 

census tract. To ensure adequate data per time period, the sample period is divided into 

three month intervals for a total of 77 periods, or quarters. In this chapter, we provide a 

brief overview for five cities: Stamford, CT, Ann Arbor, MI, Pittsburgh, PA, Los Angeles, 

CA, and Chicago, IL. Complete tables are given in Appendix A. 

Table 2.1: Metropolitan Areas in Data 

Ann Arbor, MI Kansas City, MO Minneapolis, MN Raleigh, NC 
Atlanta, GA Lexington, KY Orlando, FL San Francisco, CA 
Chicago, IL Los Angeles, CA Philadelphia, PA Seattle, WA 
Columbia, SC Madison, WI Phoenix, AZ Sioux Falls, SD 
Columbus, OH Memphis, TN Pittsburgh, PA Stamford, CT 

5 
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Table 2.2: Summary of Sample Cities 
Metropolitan Area 

Stamford, CT 
Ann Arbor, MI 
Pittsburgh, PA 

Los Angeles, CA 
Chicago, IL 

Sales 
14,602 
68,684 

104,544 
543,071 
688,468 

Houses 
11,128 
48,522 
73,871 

395,061 
483,581 

Table 2.3: Sale Coun t s for Sample Cit ies 

Metropolitan Area 
Stamford, CT 

Ann Arbor, MI 
Pittsburgh, PA 

Los Angeles, CA 
Chicago, IL 

1 sale 
8,200 

32,458 
48,618 

272,258 
319,340 

2 sales 
2,502 

12,662 
20,768 

100,918 
130,234 

3 sales 
357 

2,781 
3,749 

18,965 
28,369 

4+ sales 
62 

621 
718 

2,903 
5,603 

Table 2.2 provides the number of sales and unique houses sold in the sample period. As 

houses sell multiple times (repeat sales), the total number of sales is always greater than 

the number of houses. Perhaps more illuminating is Table 2.3 which breaks down houses 

by number of sales. As expected, when the number of sales increases, the number of houses 

drops off rapidly. Note that there are a significant number of homes which sell more than 

twice. Since the sample period is long (nearly twenty years), this is not unusual; however, 

single sales are the most common even with a long sample period. The first column of 

Table 2.3 shows this clearly. Except for Columbus, OH, this pat tern holds for all cities. 

To obtain stable price index estimates, there must be a substantial number of sales per 

quarter. In Fig. 2.1 graphs sales (in thousands) per quarter for Chicago, IL. Each bar on the 

graph represents one quarter. A feature of this plot, apart from the large number of sales 

each quarter, is seasonal pat terns in the data. For instance, more homes are sold during 

warmer months especially when school is not in session. This is clearer in Fig. 2.2 which 

plots the mean and standard deviation of sales per month for Chicago, IL. 

6 
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Figure 2.1: Sales Counts Over Time 
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The time of a sale is fuzzy as there is often a lag between the day when the price is agreed 

upon and the day the sale is recorded (around 20-60 days). Theoretically, the true value of 

the house would have changed between these two points. Therefore, in the strictest sense, 

the sale price of the house does not reflect the price at the time when the sale is recorded. 

Dividing the year into quarters reduces the importance of this lag effect. 

Finally, we examine the sale prices in the sample period. Fig. 2.3 is a plot of the median 

price (in thousands of dollars) for each quarter. In general, prices tend to increase over 

time; however there is a general decrease in prices in Los Angeles, CA and Stamford, CT 

during the late 1980's and early 1990's. There is also a difference in the level of prices 

among cities: Stamford, CT is the most expensive whereas Pit tsburgh, PA is the least. In 

Chapter 6, we add local information, in the form of zip codes, to the autoregressive model. 

Thus, zip code and census tract breakdowns for each city can be found in Table A.2. 

7 
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Chapter 3 

The Autoregressive Model 

Repeat sales analysis assumes that the previous sale price of a house contains all relevant 

information for modeling; thus, any hedonic information would be redundant. The autore­

gressive model we propose in this chapter utilizes the essence behind repeat sales while 

adding two modifications: (a) we account for gap time between sales by incorporating an 

autoregressive component directly into the model and (b) we use all of the available data. 

Repeat sales homes are used to compute the autoregressive component but all sales are 

used in calculating the price index component. These two features combine to create a 

more powerful house price model. 

3.1 Complete Data Case 

Before we introduce the autoregressive model, we start with a simpler setup. Suppose we 

have a series wi,u>2, W3,... which follows a stationary autoregressive process of order 1 

9 
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(denoted as AR(1)). This series can be described as follows: 

V1-^2 (3.1) 

Wj = 4>Wi-i + £j 

where <fi is the autoregressive parameter (\(p\ < 1). In addition, Ej ~ A/"(0,cr^) are indepen­

dent and identically distributed (iid) random variations where Af (//, a2) denotes the normal 

distribution with mean \i and variance a2. 

Under this scenario, there is a starting point for the series. Therefore, the series extends 

only forward in time, not infinitely in both directions. To accommodate this feature while 

preserving stationarity, we have multiplied the error term by , 1 . Weak stationarity 

(hereby referred to as stationarity) is defined as [42, p. 24]: 

Definition 1. The series Wi,W2,W3,... is weakly stationary as long as the following condi­

tions are satisfied: 

(1) E[wt] = n for all t where E[-] is the expectation function and JJ, < oo. 

(2) The covariance between two observations w% and tut+/u denoted as Cov(t,t + h), is a 

function only of the gap time h where h > 0. 

Next, we define the autocovariance and autocorrelation functions for a stationary series: 

Definition 2. For a stationary series wi,W2,W3,..., the autocovariance between two ob­

servations u>t and wt+h, denoted by Cov(t,t + h), is defined as 

Cov(t,t + h) = Cov(h) 

= E[(wt - n){wt+h - n)] 

10 
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where E[-] is the expectation function, /J, is the expected value of the series, and h is the 

gap length. 

Definition 3. Given a stationary series w\,W2, ws,..., the autocorrelation between two 

observations wt and wt+h, denoted by p(h), is given by: 

Cov(h) 
p{h) = coW) 

where Cov(-) is the autocovariance function and h is the gap length. 

Using these definitions, we now describe the model in (3.1) completely in Proposition 1; 

a proof is provided in the next section. 

Proposition 1. Define a time series process as follows; 

Wt = (f>Wt-l + St 

where zt ~ ./V(0,of), and \4>\ < 1. Then this series is stationary with correlation function 

p(h) = cf)h, V h £ {0} U Z + where h is the gap time. 

3.2 Observed Data Case 

The setting described in Sec. 3.1 is applicable if a house is sold at every period; however, 

this is unrealistic. Instead, we presume there is an underlying price series which is observed 

only when the house is sold. In addition, we assume the sale price is a correct measure of 

a house's value. That is, there is no measurement error. 

11 
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We model this scenario as follows. Let J/JJ be the log price of the j t h sale of the i th 

house. The parameter 0t(i,j) ^S the e n ? e c t of time t(i,j) where t(i,j) denotes the time period 

when the j t h sale of the ith house occurs. Assume there are 1 , . . . , T discrete time periods 

where house sales occur. We define "f(i,j) to be t(i,j) — t(i,j — 1); tha t is, the gap time 

between sales. The model, then, is: 

I/t,i " / % i ) = £<,! 3 = 1 

ViJ - % J ) = 0 7 ( i J ) {Vij-i ~ A ( i j - i ) ) + £i,j 3 > 1 

where <j> is the autoregressive parameter and \cj)\ < 1. If we define adjusted log prices as 

Wij = Dij — Pt(i,j)> w e c a n interpret cf) as the "correlation" between consecutive adjusted 

log prices. Finally, the random variations, £ j j , have the following distributions: e^i ~ 

M ( 0, 1
a},'i ) for the first sale and e , j ~ J\f I 0, £

 t _ ,;—^ 1 for j > 1 (or subsequent sales). 

Assume all Eij are independent as well. Note that "first sale" includes both sales of new 

homes and the first sale of older homes in the sample period. 

We prove shortly tha t the series described in (3.2) is stationary. First, we reexpress the 

definition of stationarity for this type of series. 

Defini t ion 4. Let 101,102,. • • ,Wj be an intermittently observed time series process where 

t(j) is the time of the j t h observation. Let 7( j) = t(j) —t(j — 1) be the gap time between two 

consecutive observations. This series is stationary if the following conditions are satisfied: 

(1) E[WJ] = [i for all j where E[-] is the expectation function and \x < 00. 

(2) The covariance between two observations Wj and Wj+k, denoted as Cov(t(j),t(j + k)), 

is a function only of the gap time h = Y2l=i+l T W -

In Proposition 2 we prove that the adjusted log price series to^i, 10^2,... is stationary for 

the model in (3.2) using Definition 4. Without loss of generality, we show stationarity for 

12 
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a single house. 

Proposition 2. Define a time series process as follows: 

m = £i 

w 3 = fWwj-i+ej 

where £\ ~ N 10, 1 ^ 2 ), £j ~ JV I 0, E^ 1_ ,2—- J where j ^ 1 and a// e^- are independent. 

Let t(j) be the time period of the jth observation and *y(j) = t(j) — t(j — 1) if j > 1. Finally, 

assume \4>\ < 1 and 0 ^ 0 . This series is stationary with correlation function p(h) = (f>h, 

V h 6 {0} U Z + where h is the gap time. 

Proof. We can write this process as follows: 

w\ = £i 

w2 = </>7(2)£i + e2 

w3 = 

O'-l \ 

Using the above expression for Wj, it is clear that E[WJ] = 0 V j G Z + . Next, we derive the 

covariance function, Cov(j,l). Without loss of generality assume j < I. The gap time h, 

then, iah = t{l) - t(j) = 7 ( j + 1) + • • • + 7(Z). 

13 
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Cov(j,l) E 
O'-i 'l-i 
J2 ^ = t + i 7(0£fc + £jr j / £ ^Etefc+i 7(i)£fc + £, 
fc=l / \fc=l / 

^ ^ U + l 7 » + E U + l 7 W E [ £ 2 ] + ^EU-+i7(0£;[e2] 

,EU7(0+EU7(0 + J ^ £ U + i 7 « ) + £ U + i 7 ( 0 [ l - </,27(fcA 

fc=l 

fc=2 
1 - 0 2 

\ 
+ ^ U + l 7 W ^1 

/ 
g* ^E l = 2 7(0 + EL27(«)+Ei=J + 17(0 

1 - <t>2 V 

i - i 
+ v < ^ E ^ + i 7 ( i ) + E ^ + i 7 ( i ) + 7 ^ ' + i 7 ( i ) (1 - <t*2l{k)) 

k=2 

+ / ( l - </>27^)) 

^ M L ^ E J = ! 7 W + ^ 0 2 E U + 1 7 ( i ) ^ _ 027(fc)) + ^ _ 0 2 7 ( i ) ^ 

fc=2 

J - l 

c; 
2 Ah 

k=2 

l - < / > 2 

, 2 J J I 

^2£{=a7(0 + £ y EU + 1 7(0 _ ^ ^ E L ^ W + ^ _ 027 ( i)^ 

fe=2 fe=2 

= a ^ 2 ^ 2 E U 7(i) _ ^2 EL 2 7(0 + 02 ELa 7(0 _ A2 E L S 7« 

_| 02(7O'-l)+7(j)) + ^27(j) _ 027(j) j 

O": 
2 j j i 

1 - 0 2 
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As Cov(j,l) depends only on the gap time h, the series is weakly stationary. Therefore, 

the correlation function is 

p(h) = ^ = cph. 

D 

Note that Proposition 1 is a special case of Proposition 2; we need only let j(j) = 1 

Vj e z + . 

If we think of the price series as a latent process which is only observed when a house is 

sold, the observed time series is Markovian. We define a Markov process next [37, p. 358]. 

Definition 5. A stochastic process Xt with realizations xt is Markovian if 

¥(Xt<xt\Xs, s<t)=F(Xt<xt\Xt-i). 

Following directly from Proposition 2, we can conclude: 

Corollary 3. For k < I, wi\wk ~ N (07(O-7(fc); |0(~fe| o-|). Therefore, the observed process 

toi, u>2, • • . described in Proposition 2 is Markovian. 

The autoregressive component adds an important feature to the model. Intuitively, the 

longer the gap time between sales, the less useful the previous price should be when predict­

ing the next sale price. For the model described in (3.2), as gap time increases, the variance 

of the error term increases. This indicates that the information contained in the previous 

sale price is less useful than if the gap time had been shorter. Moreover, as the gap time 

increases, the autoregressive coefficient decreases by construction (07^ J^). For short gap 

times, however, we expect the adjusted log price of each sale to be similar. This will hold 

only if the (f> is very close to 1. 
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3.3 Model Fitting 

In this section, we describe the coordinate ascent algorithm which is used to compute the 

maximum likelihood estimates (MLE) of the model parameters. This iterative procedure, 

maximizes the likelihood function with respect to each parameter while holding all other 

parameters constant [4, p. 129]. The algorithm stops when the parameter estimates have 

converged. We discuss convergence further in Sec. 3.3.2. 

3.3.1 Maximum Likelihood Estimation 

The likelihood function can be expressed as the product of conditional densities for each 

observation. To start , let 6 — {/3, cfi, o f } denote the set of estimable parameters where 

j3 = {/?i,..., PT}- If /(•) is the density of the first sale and /(- |-) the conditional density 

of a sale given the previous sale, the likelihood function L(0;y) where y is the vector of log 

prices is: 

/ Ji my) = n /(y*,i) n /(2/<,iis/io-i) 
i = l j=2 

I , ( „ / . . a \2 

n 
(40 

, l {yi,i - A(i, i)) ' v 

U 2n T%* I W * 

Ji 

W 2 T T | r = p -

exp 
1 (yij - Pt(ij) - (j>l{i'j)(yij-i - 0tgj-p)) 
2 (Tg(l-02T(',J)) 
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To simplify computations, we reparamaterize and let: 

^ = A - <3-3' 
Incorporating this change, the log likelihood function, l(6;y) is: 

I Ji 

i=l i=l j=2 

1 x ^ A (ViJ - Pt(ij) - F™ {ViJ-i - PtdJ-i))) 

i=l i=l j=2 
I Ji I.. o At(i.i) (.. a W^ 

2 r 2 ^ ^ 1 - ^ 2 7 ( W ) ( 3 ' 4 ) 

t= l j=2 Y 

where N = Yli=i Ji *s * n e total number of observations. 

T h e Coordinate Ascent Algor i thm 

Next, we outline the coordinate ascent algorithm tailored to the proposed model. On the 

practical side, the model was fit using R. Even for large metropolitan areas, such as Chicago, 

IL, the algorithm worked quickly never exceeding fifteen minutes of computing time. The 

algorithm requires starting estimates for the parameters to be specified. These values can 

be anything and the algorithm should eventually converge to the MLEs. However, to save 

computing time, formulas for useful starting values have been provided at the end of this 

section. The updating functions are provided after the algorithm. 

AR Model Fitting Algorithm 

1. Set a tolerance level e (possibly different for each parameter) and a maximum number 

of iterations K. 
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2. Initialize the parameters: 9° = [f3®,... ,/?§,, ^ ° , r 2 ' 0 } . Let {flt} denote the set of f3 

parameters. 

3. For iteration k, 

(a) For t E { 1 , . . •, T } , update $ using (3.6), to follow. That is, 

Pt = / ( { ^ < t } . { ^ 7 > t } , T 2 f c _ 1 > f c " 1 ) - A f t e r e a c h Pt update, recompute: 

W M = Vi,j ~ Pt where t(i,j) = t. 

(b) Update r 2 using (3.7). That is, T2>fe = / ({/3t
fe} , <£fc_1). 

(c) Find the zero of (3.8) to update (j)k using the estimates {{/3f} ,T2,k}-

(d) If | 0 f e _ 1 - 0fe| > e for any 0* € 0 and k < K, repeat Step 3 after replacing 0 

with 0 . Otherwise, stop and denote £/ denote the final iteration. 

4. Solve for of using the relation (3.3) and lpk',<f>k',T2'k'\. 

ifc-i 

To obtain updating functions, we must differentiate the log likelihood function with 

respect to each parameter, set the derivatives to zero, and solve for that parameter. For 

(3 and r 2 , it is possible to solve these equations exactly. However, for (/>, the zero must be 

computed numerically. As 0 is a one-dimensional parameter, numerical methods, such as 

the Newton-Raphson algorithm, are highly suitable. The functions are listed below with 

the derivations provided in Appendix B. l : 
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w. hi 

(3t 

— Vi,j ~ Pt(i,j) 

( 

I? -Hi n - t\ + V i . v ^{i,j) 

J > 1 J > 1 

( E w.i+ E I T ^ M ( ^ - ^ J ) ( ^ -
\ i : t ( i , l )=t i:t(i,j)=t ^ v 

- E x _ ^ ( i j ) ( ^ - %,;) - <^ ( i , i W-i 
i : t( i , j- l)=t ^ V 

J>1 

- A ( i J - l ) ) 

(3.5) 

(3.6) 

0 = 

1 _ 027(ij) 
y^«,? + y^ y^ i™ '̂ ~ ^ 7 ( ' J V,J- I ) 2 

i=l j=2 r 

/ Ji 

+ 7 2 E E 
(wij - pMwij-x) {-yfrfiwij-KptM-1) 

i=i 3=2 
1 - 027(<J) 

_JL V V (wi,J-^(l'j)wi,J-A 
T2l^Z^\ X _ ^27(i,j) I 

i = l j = 2 \ / 
lihj)^™-1 

(3.7) 

(3.8) 

Recall, a major criticism of repeat sales models is that since only repeat sales are used, 

a large portion of the data is omitted. In the proposed model, this is not the case. As 

can be seen in the above description, all of the da ta is used to estimate the time effect (see 

(3.6)) and a2
e. Specifically, if we examine (3.6) more closely, we see that a log index value 

is computed as a weighted sum of single sales and repeat sales. More weight is given to the 

repeat sales observations. Finally, observe tha t only repeat sales observations are used to 

estimate the value of <f>. 
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Starting Estimates 

A simple way to obtain initial estimates for each of the parameters is described next starting 

with {Pt}- For every time period, let 1 < t < T. Then, 

^ " \i:t(j) = t,Kj<Ji\.J^ f
Vi'j 

v.t{l,])=t 

where | • | is the cardinality of a set. For the remaining two parameters, extra calculations 

are required. First, we compute w: 

wiJ = Vij ~ $( Kijy 

For each gap time h, find all of the pairs of coordinates {x^ i = Wij-i, x^ 2 = Wi,j) such that 

l(hj) = h. Let H be the maximum gap time. Then, estimate (f> and r by: 

1 H 

6° = ^ X ^ ^ M . X M ) ] * H 

r2,o = Var(w 
,2,0> 

where Cor(-, •) is the sample correlation function and Var(-) is the sample variance function. 

3.3.2 Convergence of the Coordinate Ascent Algorithm 

For models in the exponential family, the MLE can be proven to exist and be unique. These 

features help us prove that the coordinate ascent algorithm converges to the MLE [4, p. 

130]. The proposed model, however, is a differentiable exponential family [5]. Therefore, the 

proof does not directly apply; nonetheless, we find empirically that the likelihood function 
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Figure 3.1: The Log Likelihood Function at Each Iteration 
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is well behaved so the MLE should be reached for this case as well. We use the likelihood 

plots from Stamford, CT as a typical example. 

In the exponential family case, the log likelihood value will never decrease at each it­

eration when applying the algorithm. In Fig. 3.1, we plot the log likelihood value after 

each parameter update to check this for our model. We see that the resulting curve never 

decreases. 

The nonlinear parameter in the proposed model is 0. For this parameter, we need to 

determine whether there is a unique maximum point. We maximize the log likelihood 

function given fixed values of <f>; that is, we maximize the log likelihood function with 

respect to only /3 and r 2 only. If we plot the maximized log likelihood value for each <j>, the 

maximum should be equal to the value of 0 which the algorithm converges to. We show 

that is the case in Fig. 3.2. The area of the plot near 1 is magnified in the second plot and 

the (f> which the coordinate ascent algorithm converges to is shown in red. Thus, we are 

confident that the fitting algorithm converges to the correct MLEs. 
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Figure 3.2: Maximizing 0 
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3.4 Final Details 

3.4.1 Asymptotic Variance of the Parameter Estimates 

To compute the asymptotic variance of the parameter estimates, we assume that the MLE 

estimates of the proposed model are consistent. Consequently, we can use the observed 

information matrix to obtain estimates for the variances [20, p. 481]. Using Greene's 

(2003) notation, 

( * ) 

d2i 0;y) 
- i 

8989' 

where 9 is a parameter. Expressions for the components of the observed information matrix 

are derived in Appendix B.2. 
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3.4.2 Converting Back to the Price Scale 

Predictions for future observations are made only for repeat sales houses: 

kj = A(ij) + ^ 7 ( i J ) ( ^ - - i - A ( i , i - i ) ) (3-9) 

As a result, we consider our method to be a repeat-sales method. 

To interpret the predictions, we must convert J/JJ to the price scale (denoted as Yij). Note, 

however, this is not as simple as exponentiating the fitted values. Instead, to compute the 

conditional mean of the response, we need to add the following adjustment: 

Yij (a2) = exp <j ytJ + y } (3.10) 

T2 
where a2 denotes the variance of of j/j j . The additional term ^- approximates the difference 

between £?[exp{:r}] and exp{E[x]}. We must adjust the latter expression to approximate 

the former. We improve the efficiency of our estimates by using this adjustment [40, p . 

3025]. In formula (3.10), a2 is estimated from the mean squared residuals (MSR), where 

MSR = jj X!i=i (Vi,j ~ Vi,j)2 w i t n N specifying the number of observations. Therefore, the 

log price estimates, yij are converted to the price scale using: 

f- MSR\ , Q 1 1 , 
exp <̂  yitj + — — > • (3.11) 

3.4.3 Index Construction 

The log price indices are given by 0; therefore exp{/3t} is the index on the price scale. An 

efficiency adjustment, such as the one in Sec. 3.4.2, is ignored as the s tandard error for j3t 
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is so small that it has a negligible impact. Given 1 , . . . , T quarters, we let the first quarter 

be the base year and set the index level for that quarter to 1. Rescaling with respect to the 

first quarter, the final estimated price index series is: 

1, exp {/32 - ft} , exp {ft - & } , . . . , exp [$T - ft} . (3.12) 
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Chapter 4 

Existing Methods 

Numerous models have been proposed for predicting house prices and constructing indices. 

The most common types fall into four major categories: hedonic, repeat sales, hybrid, and 

spatial models. We describe each with special emphasis on repeat sales methods. Finally, 

we end the chapter with a brief overview of the major commercial house price indices. 

4.1 Hedonic Models 

The simplest type of hedonic model is a regression of house price against hedonic variables: 

square feet, number of bathrooms, amenities, and so forth. Location is often included as 

an indicator variable. These models follow the standard multiple regression setup: 

Vi = A) + P\Xu + P2X2i H h (3pXpi + £t 
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where y is the sale price (or log price), x\,... ,xp are the p hedonic variables, and 6j ~ 

J V (0, er^). Most often, such models are cross-sectional and changes over time are examined 

by refitting the model yearly; however, more complex models do exist [47]. 

Pure hedonic models have been largely abandoned in favor of alternative methods due 

to various limitations. The availability of relevant variables and model form are two key 

problems that arise [7]. Other proposed methods, such as repeat sales or spatial models, 

a t tempt to circumvent such issues by using previous sale price and geography respectively 

as surrogates for hedonic variables; however, Meese and Wallace (1997) still advocate the 

use of hedonic models for constructing local indices. 

4.2 Repeat Sales Models 

Bailey, Muth, and Nourse (1963), introduced the landmark concept of repeat sales analysis. 

This method is based on the premise that the previous sale price of a house acts as a proxy 

for hedonic variables. Essentially, the log price difference between pairs of sales of a house is 

used to construct a price index. Therefore, only houses which have been sold twice are used 

to calculate the index; the remaining observations are omitted. However, homes that are 

known to have undergone significant improvement or degradation are usually also excluded 

from the analysis. For such homes, the previous sale price is not an appropriate surrogate for 

hedonic information. The Bailey, Muth, and Nourse (BMN) method was extended by Case 

and Shiller (1987, 1989) to incorporate heteroscedasticity in the error term. Finally, the 

Case-Shiller model was converted into a commercial index, the S&P/Case-Shiller® index. 

This is also a repeat sales index, however, it is computed using prices instead of log prices. 

We describe all three procedures in detail in the following subsections. 
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4.2.1 The BMN Model 

Let the subscript t index the time of sale of a given house. Let there be T + 1 time periods 

of sales from 0, 1 , . . . , T. Using the BMN notation, for a pair of sales of a given house i, 

prices and indices are related by the following expression: 

Pw _ Bt< 
-p- = -s-UM' (4.1) 
"it Dt 

where Pa a the sale price of the i th house at the tth time period (t' > t). Thus, t is the time 

of the first sale and t' the time of the second. Bt denotes the general house price index at 

time t. Finally, Uitt> is the error term and has a log normal distribution log \Jitti ~ M (0, crfy 

[1, p. 934]. The model is fitted on the logarithmic scale: 

Pit' ~ Pit = bt> -bt + uitt> (4.2) 

where p, b, and u are the logarithmic versions of the terms in (4.1). Basically, the expected 

difference in log prices for two sales of a house is surmised to equal the difference in the 

corresponding log indices. 

Linear regression is used to fit the model. For the i th house, the complete regression 

equation is: 

T 

Pit' -Pit = ^2hiXii + Uitt' (4 - 3) 

where 

— 1 if j — t and t > 0 (first sale), 

xij ~ \ + 1 if j = t' (second sale), 

0 otherwise. 
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By construction, 60 = 0 and therefore BQ = 1. If there are N sale pairs, the resulting design 

matrix, X, is an N x T matrix, y is the vector of log price differences for sale pairs. The log 

index is computed using least squares: b = (X'X) _ 1X'y; exponentiating the results gives 

us the desired index on the price scale. 

4.2.2 The Case-Shiller Method 

Case and Shiller (1987, 1989) expand the BMN setup by further assuming that the error 

terms are heteroscedastic. They reason that the length of time between sales should increase 

the variance of the log price differences between sale pairs. To compute the house price index 

while accounting for the heteroscedasticity, they follow the BMN procedure but add a small 

twist: in constructing estimates, the observations are weighted depending on the gap time. 

Sale pairs with larger gap times are given lower weights. The corresponding model is: 

Pit = h + Hit + uit (4.4) 

where pa is the log price of the sale of the ith. house at time t, bt is the log index at time t, 

and uu ~ N (0>°"u)- The middle term, Ha, is a Gaussian random walk which contains the 

previous log sale price of the house [10, p. 126]. 

A random walk 21,22, •• • can be written as a sum of random variations added to the 
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initial term. That is, 

Z2 = Z\+ V2 

Z3 = Z\ + V2 + V 3 

t 

3=2 

Case and Shiller assume that the random walk in their model is Gaussian, meaning that 

vt ~ M (0, <T^). Like the BMN model, the Case-Shiller setting is a model for differences in 

prices. Thus, we want to fit the following model: 

t' 

Pit' ~ Pit = h' ~ h + ^2 Vii + Uit' ~ Uit (4-5) 
j=t+l 

where t' > t. They use weighted least squares to fit the model to account for both sources 

of variation. The three-step procedure is described below: 

1. Fit the BMN model as in (4.2) using log price. 

2. Compute the residuals of the setup in (4.2), and denote these as e». This residual is an 

estimate of: u^i — u^ + Ylj=i vij- The expectation of e, is E[u^ti — u^ + ^ 7 = 1 Vij] = 0 

and the variance is Var[uit' — ua + Y^jZ\vij\ — 2CT̂  + (*' — t)cr% since the errors are 

independent of each other. The square of the residuals is an unbiased estimate of this 

variance. To compute the weights for each observation, the squared residuals from 

Step 1 are regressed against the gap time. That is, 

i2i = A) + A (*' -t) + m (4.6) 

2(7?, <7? 
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where E[rji] = 0. The reciprocal of the square root of the fitted values from the above 

regression are the weights. We denote this weight matrix by f i _ 1 . 

3. To obtain the adjusted index, we essentially repeat the BMN procedure as in Step 1; 

however, instead we run a weighted least squares where 

b = (X'$7 - 1 X) X ' f i - 1 y - Incorporating the weight matrix i~2_1 down-weights sale 

pairs with large gap times. 

4.2.3 The S&P/Case-Shiller® Method 

A variation of the model proposed by Case and Shiller is now used to create house price 

indices for Standard and Poors called the S&P/Case-Shiller® Home Price Index [9, 10, 44]. 

Two changes have been made from the procedure outlined in Sec. 4.2.2. First, prices instead 

of log prices are used to compute the index. Nevertheless, they a t tempt to preserve the 

random walk component of the model despite the multiplicative relationship between prices 

and indices as in (4.1). Second, measurement error in the sale price is introduced into the 

model. To handle this, instrumental variables are used when fitting the model. 

As before, we have T + 1 time periods from 0, 1, . . . , T. We will ignore the "random 

walk" part of the model for now; we will see why in a minute. For sale pair i, we can write 

their model as: 

-PJO = ftt'Pw + UiQt' first sale at time 0, 
(4.7) 

0 = fit'Pit' ~ fitPit + Uitt' first sale at t ime t > 0 

where Pn is the sale price of house i at time t, fit is the inverse of the index at time t, and 

Unt' ~ -A/" (0, afj). The index Bt = 4- and BQ = 1. As before, the price index at time 0 is set 

to 1 by convention. Even with this transformation from fit to Bt, we still cannot replicate 
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the original BMN repeat-sales model as given in (4.1) for price because of the additive error 

term Uut' which was originally multiplicative on the price scale. Moreover, it is unclear on 

how to incorporate the contribution of the random walk since we are multiplying the prices 

by the (3 values. Ultimately, there is a disconnect between the writ ten and actual models. 

Meissner and Satchell (2007) observe this problem as well in their paper comparing this 

index with the Financial Times House Price Index used in the UK. 

With this version, observe that the response vector contains mostly zeros as the vast 

majority of sales do not occur in the base time period. However, as sales in the base period 

are the only sales to not be multiplied by an index since Bo = 1 by construction, one 

must assume that this is why they are the only prices that appear in the response vector. 

Moreover, it seems misleading to create a model where future sales are used to explain a 

preceding sale. For those sale pairs where the first sale is in the base period, this is exactly 

what occurs. 

This model also assumes tha t prices do not reflect the true value of the house. Tha t is, 

there is some measurement error. In least-squares regression, the explanatory variables are 

assumed to be fixed, not variable. Introducing measurement error into the prices violates 

this assumption resulting in biased coefficient estimates. To accommodate this, instrumental 

variables (IV) can be used when fitting the model [46, p. 7578]. 

Irrespective of any correspondence to a model such as (4.7), the S&P/Case-Shiller® 

procedure follows in essence the three step pat tern outlined in Sec. 4.2.2. The design 

matrix X, IV matrix, Z, and response vector y are now denned as follows [44, p . 22]: 
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-X-n 

Vi 

—Pij if j = t and t > 0 (first sale), 

Pij if j = t' (second sale), 

0 otherwise. 

— 1 if j = t and t > 0 (first sale), 

1 if j = t' (second sale), 

0 otherwise. 

Pij if j = 0 (first sale at time 0), 

0 if j y£ 0 (first sale not at time 0) 

Note that the matrix Z here was the matrix X in the Case-Shiller method. A valid instru­

ment Z must satisfy the following two conditions [46, p. 7578]: 

1. The instrument must be uncorrelated with the regression error term. In this case, Z 

should be uncorrelated with the Uitti values. Since Z simply indicates what type of 

sale has taken place (first/second), it is be uncorrelated with the error term. 

2. Z does not have a direct effect on Y; it only affects the response variable through X. 

This is true for the S&P/Case-Shiller® setting as well. 

Therefore, Z, as defined above, is a valid instrument. The regression in the first step of the 

S&P/Case-Shiller® procedure is now, (Z'X)_ 1Z'y which is simply the least square estimate 

when using an instrumental variable. The third step now becomes (ZTi _ 1 X) _ 1 Z / r i _ 1 y . 

The second step, where the weights are computed, is the same as in the Case-Shiller proce­

dure [44, p. 25]. 
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Table 4,1: Removing Single Sales 

City I No. Obs. No. Repeat Sales % Repeat Sales 

Case-Shiller (1970-1986) 
Atlanta, GA 
Chicago, IL 
Dallas, TX 

San Francisco/ 
Oakland, CA 

221,876 
397,183 
211,638 
121,909 

8,945 
15,530 
6,669 
8,066 

4.0% 
3.9% 
3.2% 
6.6% 

Meese-Wallce (1970-1988) 

Freemont, CA 
Oakland, CA 

23,408 
27,606 

3,405 
3,342 

14.5% 
12% 

4.2.4 Discussion of Repeat Sales Methods 

While repeat sales methods look promising, a number of problems have been highlighted. 

Perhaps the most obvious issue is that single sales are excluded reducing the sample size 

significantly. Sample sizes of data used in Case and Shiller (1989) and Meese and Wallace 

(1997) are shown in Table 4.1. The number of observations that are eliminated is staggering. 

While data spanning a longer period will result in a higher number of repeat sales, the 

number of newly built houses also increases. Therefore, the proportion of repeat sales 

among all house sales does not increase as fast as one might expect. 

Among repeat sales homes, further cuts are made if the house has significantly improved 

or deteriorated between sales. This is because "house quality" would not have been con­

trolled in the intervening period. Most likely, the Case-Shiller percentages are lower in 

Table 4.1 than those for Meece-Wallace because houses that went under significant renova­

tion and were not arms-length transactions (i.e. houses sold cheaply to relatives, etc.) were 

excluded, eliminating even more data. 

A related issue is that in repeat sales models, a home is ignored until it is sold for a second 

time. To see the impact, say that a house is sold first at time t and again at time t'. If the 
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initial da ta set includes sales until t ime t* where t < t* < t', this particular house would 

neither be part of the data nor would it be used to compute the index value for time t. Now, 

if the data is updated to include all sales up to time t', the house is included and is used to 

compute the index for both time t and t ime t'. Thus, indices can be revised retroactively. 

This is problematic if indices are to be used in a commercial setting. S&P/Case-Shiller® 

use a "chain-weighting" procedure to avoid revising the indices [44, p. 26]. 

Omitting single sales raises the issue whether repeat sales homes are representative of 

the entire housing market. In any time span, houses can be categorized as follows: new 

home sales, repeat sales with no changes in the house, repeat sales homes with changes, 

and houses not sold [7, p. 290]. Repeat sales methods only use data in the second cate­

gory. There are two ways in which repeat sales methodology can be evaluated in terms of 

"represent ati veness." 

The first method is to investiage whether repeat sales homes are fundamentally different 

from single sale homes. Recall, in an entire sample period, a single sale can refer to a new 

home or and old home which sold only once in the sample period. There is a hypothesis 

that a higher proportion of repeat sales are "starter homes." Young families tend to live in 

these so called "starter homes" and later trade up to larger homes after only a few years 

[14, p. 271]. Clapp, et al. (1991) test this hypothesis with inconclusive results. Meese and 

Wallace (1997) test this claim as well by comparing hedonic models with an indicator for 

repeat sales and with interaction terms between repeat sales and hedonic variables. The 

covariates are: number of bathrooms, number of bedrooms, the ratio of bedrooms to total 

number of rooms, square footage, age, and an "index of house quality" which was not well 

described in the paper. In their analysis, they found there was a significant difference and 

"...repeat-sales homes tha t did not change attributes are slightly smaller, and are in worse 

condition, than the average for single-sale homes...The repeat-sales homes that did have 

at t r ibute changes...tend to be slightly larger and in worse condition, than the average for 
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single-sale homes [27, 55]." It is unclear whether this is the case because brand new homes 

have a higher index of house quality. Furthermore, the choice of variables and form of the 

model can always be questioned in such analyses. 

A second way to look at representativeness is whether the value of various housing char­

acteristics change over time. Meese and Wallace (1997) test this as well using a similar 

setup to the one described above; however, they do not distinguish between repeat and 

single sales but do allow for interactions between housing characteristics and time. Recall 

repeat sales methodology assumes tha t the value of the housing at tr ibutes do not vary over 

time; therefore, sales of homes can be examined just for the time effects. Meese and Wallace 

find that this assumption does not hold and, in actuality, the value of at tr ibutes do change. 

For practical reasons, it is impossible to include all relevant covariates for lack of da ta and 

because new attr ibutes (such as dishwashers and other amenities) come into existence. In 

addition, these changes can simply be thought of as adding to the time effect and become 

part of the price index. 

Even if changes in at tr ibute values are ignored, there is one aspect that varies with all 

houses: age. Case, et al (1991) claim that because age changes over time, repeat sale 

indices are biased. Basically, the time effect is confounded with the age effect. Specifcally, 

the general upward trend of the effect of time is countered by the negative effect of age. 

Palmquist (1979) suggests adding in a depreciation factor to the repeat sales procedure to 

account for this; however, this factor must be independently computed which adds much to 

the complexity of the model [29, p. 337]. 

Both the Case-Shiller and S&P/Case-Shiller® indices are computed using generalized 

least squares (GLS). The usual GLS procedure would be to define the weight matrix il as 

a matrix of estimated variances. Such weights are used so that the best linear unbiased 

estimates (BLUE) of the regression coefficients are obtained. However, in the Case-Shiller 
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models the estimated standard deviations are used instead. Consequently, the resulting in­

dex estimates are unbiased but do not have the lowest possible variance. This is undesirable 

especially if the regression estimates are to be used for prediction and prediction intervals 

are to be constructed. 

The BMN model is equivalent to a two-way fixed effects model: 

Pit = cni + bt + eit (4.8) 

where on is a fixed house effect and bt is the log index. It is fit, however, for differences in 

prices, p^ — pa and so the fixed effect for houses drops out and we obtain (4.2). The setting 

in (4.8) is more appropriate, however, when houses sell more than twice in the data. If there 

are three sales, for example, then the house appears in the data as two sets of sale pairs: 

the first and second sales form a pair and so do the second and third sales. Bailey, Muth, 

and Nourse (1963) address this by pointing out that this situation causes correlations in 

the residuals if you assume that there are house specific effects. They suggest introducing 

a "property" effect into the model and fitting (4.8) instead of (4.2) [1, p . 939]. Thus, they 

advocate modeling log prices instead of price differences. However, this procedure is not 

implemented. The Case-Shiller methods do not address this common scenario at all. 

A second point arises when examining the case of multiple sales. For instance, say a 

house is sold thrice: one at time 0, a second at time h, and a third at t ime h + g. Recall 

tha t the variance of the difference of a pair of sales is given by 1a\ + (£' — t)a% where t and 

t' are the times when the sales occurred. Say, by chance, we do not know about the second 

sale. Then, the variance of the difference of the first and third sale should be 2a^ + (g + h)a^,. 

Ideally, the fact that there was a second sale which was missing from the data should not be 

informative; that is, the variance of the estimates should not change with this knowledge. 

However, this is not the solution if derived from the regression equations. Rather, knowing 
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there is a second sale at time h is informative. To see why this is true, we start by writing 

the regression equations for both pairs of sales: 

3/2 ~ 3/1 = #2 - A + £o,h (4.9) 

J/3-1/2 = 03-fo+£h,h+g (4-10) 

where et)t/ includes both the random error and the cumulative random walk error. Adding 

(4.9) and (4.10), we obtain: 

3/3 - 2/2 + 3/2 - yi = fa- P2 + P2- Pi + £o,h ~ £h,h+g 

2/3-3/1 = fa - Pi + £o,h - £h,h+9 

Var [2/3 - yi] = ^ a r [u0>/l] + Var [uh}h+g] 

= 2a2
u + ha2

v + 2a2
u+ga2

v 

= 4(72 + ^ + ^(72. (4.11) 

The variance of the first and third sales, given the knowledge of the second, is larger than 

if we had simply omitted it from the data. This occurs because the Case-Shiller model is 

not a stationary time series. 

Random walks are nonstationary because the autocovariance function does not depend 

only on the gap time. The Case-Shiller method, however, models the first difference of the 

random walk: 3/2 — 2/1 > J/3 ~ 2/21 • • • • This is a white noise process and is stationary. However, 

introducing the error term uu into the model in (4.4) causes the final model given in (4.5) 

to be nonstationary. 

A final issue also noted by Calhoun (1996) and described in more detail in Sec. 4.5, applies 

to Case-Shiller indices only. In the second stage when weights are computed, there is always 

a chance that for a particular sale pair, the computed weight may in fact be negative. For 

37 



www.manaraa.com

such cases, the third step cannot be executed at all. Calhoun (1996) outlines a method to 

circumvent this issue. 

Ultimately, despite numerous concerns regarding repeat-sales methods, such procedures 

have been wholeheartedly adopted by the corporate sector. A number of agencies, including 

Standard and Poor's, use the Case-Shiller repeat-sales method to construct house price 

indices (see Sec. 4.5). 

4.3 Hybrid Models 

The most common criticism of repeat sales models is that a large portion of sales are ignored. 

Hybrid models attempt to address this issue by combining hedonic and repeat sales methods. 

This allows all of the data to be used without forgoing the extra information provided by 

repeat sales homes. To implement this class of models, however, hedonic variables are 

necessary. 

Case and Quigley (1991) propose one such model. They implement their model using 

single family home sales in Honolulu, Hawaii from October 1980 through October 1987. 

There were 418 total sales for 310 houses. Of these sales, 108 were repeat sales of which 

47 had no changes made to the house. "Ten out of the thirteen coefficients are statistically 

significant at the 0.01 level, and the simple correlation between the actual sale price and its 

predicted value is almost 0.9 [8, p. 56]." However, a countless number of significance tests 

were conducted and no analysis of residuals was done. 
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Quigley (1991) proposes an alternate hybrid model. 

Vi,j = Qi,j + at(i,j) + ^ij 

Qi,j — PXij + & + rjij 

where yij is the log price of the jth. sale of the i th house, oct(ij) ls the log price index 

for time t(i,j), and Uij. The unobserved log of a houses's quality level at the j t h sale is 

given by Qij. The quality is modeled by a regression of covariates, X j j , a fixed effect for 

house £j, and another error term, r/ij. Several assumptions are placed on the expectation 

and covariance of the error terms. Furthermore, it is assumed tha t house prices follow a 

random walk. To fit the model, use the repeat sales da ta to determine the parameters 

for the variance-covariance matrix. The second step is to use all of the data (repeat sales 

and single sales) to fit the above model using GLS with the previously computed variance-

covariance matrix. Quigley claims tha t his procedure has two advantages: (1) important 

information included only in the repeat-sales da ta is extracted and (2) the information 

on single sales is used to "...increase the efficiency of estimation of the parameters /3 and 

at(i,j) [33, P- 6]." Quigley finds that by using this two-step approach, s tandard errors were 

reduced. Quigley applies his model to da ta from condominium sales in Los Angeles from 

January 1980 through December 1991. There were a total of 843 sales in the sample period. 

In checking the random walk assumption, Quigley finds that as the gap time increases, the 

variance of the difference in house price increases but at a decreasing rate [33, p. 9]. 

While hybrid methods improve upon the repeat-sales concept by including all of the sales, 

the problem of the availability of hedonic variables and selecting the correct model form 

still remains. Given these two issues, the hybrid class of models is currently not practical. 
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4.4 Spatial Models 

The final class of models a t tempts to incorporate location into the pricing model beyond 

its role in hedonic models. Most commonly, the correlation between the error terms of a 

model is specified using spatial information. This incorporates a feature which hitherto 

was ignored: homes in the same neighborhood tend to be priced similarly. Gelfand, et al. 

(1998) observe that neighborhood or subdivision is not only a spatial property, it also acts 

as a surrogate for hedonic characteristics. In Gelfand, et al. (2004), it is found that "40-80 

percent of the variability [in prices] is spatial [16, p. 163]." 

In the spatial model proposed in Gelfand, et al (1998) hierarchical Bayes methods are 

used to predict house price. Their linear model includes: hedonic covariates, t ime effects, 

subdivision effects, and an interaction term between time and subdivision. The final com­

ponent is included to allow spatial relationships to change over time. The best models did 

not include an interaction between time and subdivision. Furthermore, models with an 

additive temporal effect have similar predictive performances to ones where the effects of 

time are allowed to evolve. 

As mentioned, models which incorporate hedonic variables suffer from two problems: the 

availability of relevant variables and the possibility of an incorrect model. Pavlov's (2000) 

solution is to use location as a proxy variable. The location of a house should include 

information about the unobserved hedonic variables. 

The proposed model is given below: 

*i = p{xuyi) + qi{xh yi)Si + q2(xi, y^bi + q3(xi,yi)di + e* 

where Zj is the log(price) of the sale, Si is the size of the house, bi is the number of bathrooms, 
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di is the number of bedrooms, and £j is the error. The intercept, p(xi,yi), and slopes 

<n{xi,yi)i l2(xii Vi), a n d q3(xi,Vi) are to be estimated. These are smooth functions of the 

location coordinates (xj,y,). Therefore, the unobserved variables influence both the slopes 

and the intercepts of the model through location. Pavlov denotes these as space-varying 

coefficients (SVC). The errors are assumed to be independent and identically distributed 

with an unspecified distribution and independent of location. Note tha t this model is 

static-there is no time dimension. 

To fit the model, weighted least squares is used. The weights for each observation are 

determined for each point (xi,yi) using a k-nearest neighbors type algorithm. Two models 

are examined: with and without zip codes. For the simpler model, the fc-nearest neighbors 

are determined using Euclidean distance. The weights are computed by combining these 

distances with a parabolic weight function. To incorporate the zip codes into the model, 

the /c-nearest neighbors are chosen using an alternate distance metric. Euclidean distance 

is still used; however, if a "nearby" house is in another zip code, a constant v is added 

to this distance. The goal is to make houses in another zip code seem "farther" away. 

Cross-validation is used to determine the optimal values for k and v. 

Home sales from Los Angeles' West Side between April 1st and September 30th 1997 were 

used. There were 3,000 observations in the data set. Pavlov shows visually that both slopes 

(marginal effects) and intercepts do seem to vary according to location. In comparisons 

with other methods, the SVC method seems to predict prices better. 

41 



www.manaraa.com

4.5 Commercial Indices 

Over the last decade, a number of indices have emerged as more people have looked to the 

housing market for investment opportunities. In addition, with the current market collapse, 

housing indicators have become increasingly important in the quest for understanding how 

such markets operate. The issues that arise when developing house price models have been 

discussed earlier in this chapter. However, a practical concern still remains. Housing data, 

unlike stock data, cannot be examined in real time. In fact, most indices start reporting 

with at least a two-month lag between transaction dates and publication dates. This means, 

initial reports for January would not be released at least until March. Therefore, house price 

indices are mostly used for examining long term trends. In this section, we describe five US 

indices and, as a comparison, two UK indices. 

US Indices 

The Office of Federal Housing Enterprise Oversight (OFHEO) releases a quarterly repeat 

sales index, the House Price Index (HPI) for each state, census division, and nationwide. 

The data are provided by the Federal Home Loan Mortgage Corporation (Freddie Mac) and 

Federal National Mortgage Association (Fannie Mae) and contain homes which qualify for 

a conventional mortgage. This criterion excludes some high-end homes and homes bought 

at subprime rates. For the most part, they follow the Case-Shiller method (see Sec. 4.2.2); 

however, a few adjustments are made. In the second stage of the method when the weight 

matrix is computed, there is a chance that some weights are negative. Recall, the regression 

in (4.6) is fitted to calculate the weights. The intercept of this regression could be negative 

and large enough to offset the second term resulting in negative weight. In such situations, 

the third step of the Case-Shiller method cannot be computed. To eliminate this issue, 
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instead of writing the model as in (4.4), the white noise component, uu is replaced by Uj. 

That is, there is only one error term for each house, not for each house and sale combination 

[6, p. 9]. The resulting model is: 

Pit = bt + Ui + En (4.12) 

Essentially, u\ is treated as a fixed effect. As the Case-Shiller index looks at differences 

between prices, «j drops out of the fitted model. 

A second modification to the Case-Shiller procedure is in regards to the random walk 

assumptions. For two sales of a house at time t and t', recall: 

j=t+i 

where vtj are the random walk steps and E [vij] = 0 . If we compute Var [Hit/ — Hu] 

Var[Hit,-Ha] = Var 
t' 

E Vii 
3=t+l 

= E \ ^2 vv 
Kj=t+1 

t' t' t' 

= E E K] + E E E twl 
j=t+i j=t+if=t+\ 

= (*' - t)E [«?•] + (f - t)((t' -t)- \)E [vijVir] 

= (t' - t) (E [u?.] - E [vi^,]) + (t'-t)2E [Vijvy 

where j ^ j ' . In the Case-Shiller model, E [vijViji 

] = 0 V j # f leaving Var [Hit> - Hit] = 

av{t' ~ *)• However, this assumption is not made when computing the OFHEO index. 

Consequently, at the second stage of the fitting procedure, the squared residuals are instead 

regressed against the gap and squared gap times [6, p. 10]. 
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A third adjustment the HPI index makes to the Case-Shiller method is in regards to the 

weighting scheme. The Case-Shiller procedure applies weights to each observations based 

solely on the gap time and not on initial sale price. Shiller writes, "The [initial sale price] 

weighting may make a difference to the estimated index if price changes in more valuable 

houses are different from price changes in less valuable houses [41, p . 110]. To address this, 

the HPI index is released with an adjustment factor which can be applied when using the 

index on a particular house [6, p. 11]. 

Two other indices are released by The National Association of Realtors and Freddie Mac 

and Fannie Mae. The former provides a number of indices at the regional level including 

single family homes, condominiums, and co-ops. These monthly indices are simply the 

median sale price for that month. The Conventional Mortgage Home Price Index is released 

by Freddie Mac and Fannie Mae quarterly. While they use the same da ta as OFHEO, these 

are separate indices. The Case-Shiller method as given in (4.4) is used to compute indices 

for numerous US cities and regions [45]. These last set of indices are by far the most 

granular-even very small US cities are included. 

The S&P/Case-Shiller® Home Price Index is a monthly and quarterly index for 20 

Metropolitan Statistical Areas (MSA) and three combined indices. An MSA is essentially a 

city along with surrounding areas which make up the metropolitan area, such as Chicago, 

IL and its suburbs. Note that MSAs can extend beyond state borders. The commercial 

Case-Shiller methodology is described in detail in Sec. 4.2.3. In the commercial index, in­

dices are computed using a rolling three-month window. Tha t is, a house sale in October 

is used for computing the index for October, November, and December. This is done by 

listing the house three times, for October through December, and weighting each "expanded 

observation" by 1/3 [44, p. 26]. Furthermore, additional weights are added based on the 

initial sale price of the house and whether or not the house underwent significant changes 

[44, p. 7]. 
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A new, competing index is the Radar Logic Daily Price Index which includes both 

single family homes and condominiums for 25 MSAs. They use a rolling window to provide 

indices for the past 7, 14, and 28 days. They claim to use all available da ta but after further 

inspection, some counties seem to have very low inclusion rates. 

The index is constructed, roughly speaking, using the median price per square foot (ppsf) 

of the homes sold in the given window. Specifically, let N be the number of houses with a 

particular ppsf value (or range as in a histogram). Then, for two sets of ppsf and AT values, 

have the following relationship [24, p. 7]: 

logN = log N1 + p (log ppsf - l o g ppsf) . (4.13) 

Essentially, an empirical probability distribution function is fit to the "histogram" of log 

N against log price per square foot. The log price per square foot values are divided into 

three categories: low, medium, and high. A piecewise linear function approximates this 

histogram with a line for each category. They term this the Triple Power L a w ™ . The 

median of the resulting distribution is converted back to the price per square foot scale 

which is the reported index [24, p . 9]. 

To have an idea of what these indices look like, the OFHEO index, the S&P/Case-

Shiller® Home Price Index, and the Radar Logic Dai ly™Price Index (28 Day) indices are 

plotted for Washington, D.C in Fig. 4.1. The indices have been rescaled on the plot to 

ease comparisons. Observe that the indices track each other quite closely even though the 

methodologies used vary. In addition the Radar Logic Dai ly™Price Index is more volatile 

since it is a daily index whereas the other two are monthly. 
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Figure 4.1: Comparing US Commercial Indices 

Washington, D.C. 

Jan 2000 Jan 2002 Jan 2005 Nov 2007 

Time 

UK Indices 

The Land Registry is a UK government agency which collects and provides property data for 

England and Wales. They also release the monthly Land Registry House Price Index which 

is computed by Calnea Analytics, Ltd. Essentially, the index is constructed using repeat 

sales methodology with a seasonal adjustment [25]. Indices are computed both locally and 

nationwide. 

A competing index, the monthly Financial Times House Price Index, is computed by 

Acadametrics Ltd. employing a wholly different method. Indices are released for regions, 

counties, and London boroughs. The types of housing included in the analysis are: detached 

houses, semi-detached houses, terraced houses, and apartments. Using property data, a 

"mix-adjusted index" is calculated where "mix" simply indicates the use of different types 

of homes for constructing the index [28, p. 1]. Essentially, a weighted average of the trends 

among these four categories are calculated accounting for various factors such as seasonality. 
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This is the only index which does not use individual property prices using averages over 

small regions instead. 
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Chapter 5 

Results for the Global Models 

The autoregressive model proposed in Chapter 3 is as follows. Let yij be the log price of 

the j t h sale of the i th house. The parameter /3t(jj) is the log price index for quarter, t(i,j), 

and let 7(1, j) be the gap time if it is the second or higher sale. Then, 

2/i,i - Pt(i,i) = £i,i 3 = 1 

Vhj ~ Pt{i,j) = <t>l{i,j) {Vi,j-i - A ( i j - i ) ) + £i,j J > 1] 

where e^i ~ A/" f 0, y r ^ ) a n d £i,j ~ A/" (0, CTg ̂  ~_,2—- J when j > 1. The parameters to be 

fitted are: (3, (j), and erf. 

In this chapter, we will test the applicability of the model to the data using several 

approaches. Recall tha t we expect pairs of sales with short gap times to be highly correlated. 

If true, the estimate for 4> would be close to one. We confirm this belief in Sec. 5.1. In 

Sec. 5.2, we investigate through simulation the validity of using the observed information 

matrix to compute the standard errors of the parameter estimates. Sections 5.3 and 5.4.3, 
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focus on checking model assumptions. We examine the AR(1) assumption and analyze the 

residuals. Finally, in Section 5.4, we compare the predictive performance of the proposed 

model with three other methods: a fixed effects model, a mixed effects model, and the 

S&P/Case-Shiller® method. In Sec. 5.5 we discuss Los Angeles, CA, a city where our 

proposed model performs relatively poorly. Finally, in Sec. 5.6, we investigate why the 

autoregressive model performs better than existing repeat sales models. 

5.1 Parameter Estimates 

Table 5.1 lists the estimated values for the autoregressive coefficient (</>), a component of 

the error variance (v^) and their asymptotic variance estimates. The magnitude of the 

variance estimates for the j3 are a bit larger to those for (f> and af and are computed using 

the observed information matrix (see Sec. 3.4.1). There are two features to note here. First, 

the variance estimates are quite small; this is because the data sets are large. The second 

feature is that <j> for each area is extremely close to one. Naturally, after subtracting the 

log index (/?{), the adjusted log prices for homes with a short gap time are expected to be 

closer than those with a longer gap time. 

In Fig. 5.1, the price indices for all cities are plotted together. There is considerable 

variation among cities in the sample period. The general trend is upwards; however, for 

several areas such as San Francisco, CA, Los Angeles, CA, and Seattle, WA there is a 

downward trend during the mid 1990s. In Sec. 5.5, we will be examining the California 

metropolitan areas more closely. On the relative scale, San Francisco, CA home prices rose 

the most whereas those of Memphis, TN grew the least. 
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Table 5.1: Estimated Values of 0 and a\ 

Metropolitan Area 
Ann Arbor, MI 

Atlanta, GA 
Chicago, IL 

Columbia, SC 
Columbus, OH 

Kansas City, MO 
Lexington, KY 

Los Angeles, CA 
Madison, WI 

Memphis, TN 
Minneapolis, MN 

Orlando, FL 
Philadelphia, PA 

Phoenix, AZ 
Pittsburgh, PA 

Raleigh, NC 
San Francisco, CA 

Seattle, WA 
Sioux Falls, SD 

Stamford, CT 

<t>( 
0.995698 ( 
0.995202 ( 
0.995785 ( 
0.997746 ( 
0.996291 ( 
0.996293 
0.997196 
0.991267 
0.995800 
0.996709 
0.994855 
0.995203 
0.996269 
0.995439 
0.994818 
0.995582 
0.990293 
0.992424 
0.996416 
0.992518 

s.e.) 
6.8689e-5) 
3.2987e-5) 
2.1285e-5) 
1.0025e-4) 
4.0251e-5) 
;4.7568e-5; 
;5.7846e-5; 
;5.7383e-5; 
;7.8466e-5; 
;5.7500e-5; 
;4.0850e-5; 
;6.2230e-5; 
;i.5454e-5; 
[4.8433e-5; 
;6.7854e-5; 
;5.7093e-5; 
'1.9460e-4^ 
^6.9650e-5N 

(1.3851e-4 
(3.0468e-4 

°l 
0.001459 ( 
0.001548 ( 
0.001333 ( 
0.000832 ( 
0.001165 ( 
0.001350 ( 
0.000897 ( 
0.002011 ( 
0.001011 
0.000952 
0.001324 
0.001639 
0.001515 
0.001456 
0.002387 
0.001285 
0.001829 

) 0.001610 
) 0.001019 
) 0.002169 

[s.e) 
2.1255e-5) 
9.6582e-6) 
6.1202e-6) 
3.2164e-5) 
1.0296e-5) 
1.5929e-5) 
1.6753e-5) 

1.2168e-5) 
1.7210e-5) 
1.4875e-5) 
;9.6241e-6) 
1.9384e-5) 
;4.9199e-6) 
;i.4099e-5) 
;2.8578e-5) 
;i.4993e-5) 
;3.4776e-5) 
;i.3586e-5) 
;3.5962e-5) 
;8.2365e-5) 

ure 5.1: Indices from the Autoregressive Model for All Metropolitan Areas 

Price Indices (AR Model) Legend 

— Ann Arbor, Ml 
— Atlanta, GA 
— Chicago, IL 
— Columbia, SC 
— Columbus, OH 
— Kansas City, MO 

Lexington, KY 
— Los Angeles, CA 

Madison, WI 
Memphis, TN 

— - Minneapolis, MN 
— Orlando, FL 
— - Philadelphia, PA 
— Phoenix, AZ 
— Pittsburgh, PA 
— Raleigh, NC 

San Francisco, CA 
— Seattle, WA 
— Sioux Falls, SD 

Stamford, CT 

Jul 1985 Apr 1990 Jan 1995 Oct 1999 Jul 2004 

Quarter 
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5.2 The Asymptotic Variance Assumption 

In Sec. 3.4.1, we describe using the observed information matrix to compute the asymptotic 

variances. We determine whether this is appropriate using simulated data. The procedure 

used to simulate the data is outlined below. 

D a t a S imulat ion A l g o r i t h m 

1. Set the parameters | / ? i . . . , fir, o"|, <f>} and fix the maximum number of sales M. 

2. For each of / houses, 

(a) Select the number of sales Jj from a discrete uniform distribution: Jj ~ U(l, M). 

(b) Select, without replacement, Jj values from 1 , . . . , T . These are the quarters 

when sales occur: t(i, 1 ) , . . . ,t(i, Jj) where t(i,j) denotes the time of the jth 

sale of house i. 

(c) Compute the gap time 7(1, j) between each sale of house i only if J{ > 1. Recall, 

gap time is: 7(2, j) = t(i,j) - t(i,j - 1). 

(d) Simulate the random variations for sales 1 , . . . , J;: 

i. Simulate: £;,i ~ M (o, j^z) • 

ii. Simulate: eitj ~ M (o, ^ f ^ ' ^ ) when j > 1. 

(e) Finally, construct the series y^f. 

i. For j = 1: yi}1 = /3t{i^ + £•»,!• 

ii. If Ji > 1, for j > 1: yitj = / 5 t ( i J ) + <jp^) (y ; j_ i - Pt(i,j-i)) + £i,j-
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Table 5.2: Comparing Simulated and Expected Results 
Parameter 

<P 
°l 
Pt 

True Value 

0.995 
0.002 
11.15942 

Mean of Estimates 

0.994978 
0.002000 
11.15992 

SD of Estimate 

5.642e-5 
1.398e-5 
4.244e-3 

Mean SE 

from 1(0) 
— j . 

4.494e-5 
1.1987e-5 
3.634e-3 

100 data sets are simulated for the experiment each with 100,000 observations and an 

average of 40,000 homes. The maximum number of sales M for a single house was set 

at four. There were 70 quarters of sales where j3 ranged from 10 to 20, 4> = 0.995 and 

of = 0.002. Table 5.2 provides the results for 4>, of and a selected (typical) /3f We see 

the that the average parameter estimate is extremely close to the true value; this is also 

evident in Fig. 5.2 where the estimates from the 100 simulations are plotted. We conclude 

that the MLE estimates are virtually unbiased for this setting. The second set of columns 

in Table 5.2 show the standard error estimates. We compare the standard deviation of the 

parameters across the simulations with the average standard error estimate computed from 

the observed information matrix. These sets of values are also quite close. 

The final check is whether the parameter estimates are normally distributed. This seems 

like a reasonable assumption for of and /3t based on the normal quantile plots in Fig. 5.2. 

For </>, however, this does not seem to be the case. In some sense, this is not surprising 

given that <f> is so close to 1; for values of (f> that are less extreme, the normality assumption 

may still apply. 
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5.3 The AR(1) Assumption 

The model assumes that the quarter-adjusted log prices, Wij = yij — /?t(i,j)> follow a latent 

AR(1) time series. Thus, for each gap time, i(i,j) — h, there is a different correlation 

between the sale pairs, namely <j>h. To check that the data supports the theory, we compare 

the correlation between pairs of quarter-adjusted log prices at each gap length. 

First, we compute the estimated adjusted prices u)jj = yij — $t(i,j)- Next, for each 

gap time h, we find all the sale pairs (wij-i,Wij) with that particular gap length. The 

sample correlation between those sale pairs provides us with an estimate for gap length h. 

If we repeat this for each possible gap length, we should obtain a steady decrease in the 

correlation as gap time increases. In particular, the points should follow the curve <f>h if the 

model is specified correctly. 

A sample plot for Columbus, OH is shown in Fig. 5.3. To compare, the estimated 4>h curve 

is plotted as well. Gap lengths with less than 20 sale pairs are denoted with the triangle 

symbol. The relationship between (f> and gap time seems to hold moderately well for this 

city. Plots for all of the metropolitan areas can be found in Appendix D (Figs. D. l - D.4). 

Not all metropolitan areas seem to have the desired relationship, however. Of particular 

note is Los Angeles, CA which will be discussed in further detail at the end of this chapter. 

5.4 Model Validation 

In this section, we investigate the predictive accuracy of our model as compared to others. 

For this purpose, the observations for each city are divided into training and test sets. The 

test set contains all final sales for homes tha t sell three or more times. Among homes tha t 
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Figure 5.3: 0 vs Gap Time (Columbus, OH) 

Columbus, OH 

1.0-

0 . 8 -

0 .6 -

0 .4 -

0 . 2 -

0 .0 -

0 20 40 60 
Gap Time (quarters) 

sell twice, the second sale is added to the test set with probably 1/2. As a result, the test 

set for each city contains around 15% of the observations. The remaining sales (including 

single sales) comprise the training set. The actual training and test set sizes for each city 

are given in Table A.3. 

5.4.1 Competing Models 

We will now describe three alternate models: a fixed effects model, a mixed effects model, 

and the established S&P/Case-Shiller® model. The first two models are considered simple, 

benchmark models to evaluate performance. The third is a commercial method used by 

Standard and Poor's. 

• less than 20 pairs 
— y = <|>* 
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Fixed Effects Mode l 

This is a two-way fixed effects model. The expected log price E[yij] is modeled as the sum 

of a house effect (oti), a quarter effect {fit), and overall mean /i. Let i be the subscript for 

house ( 1 , . . . , / ) , j be the sale index ( 1 , . . . , Ji) and t denote the quarter ( 1 , . . . , T) . The 

form of the model is: 

yitj = n + an + ft(ij) + £itj (5.1) 

where £; j ~ A/"(0,<7g). Given the large data size, ordinary least squares methods are not 

feasible and the residual regression method is used instead for fitting. Details are given in 

Appendix C.l . After estimating the parameters, an index can be constructed as follows: 

1, exp { f t - ft} , exp { f t - ft} , . . . , exp {/3r - ft} . (5.2) 

An adjustment to improve efficiency applied when converting the log indices to the price 

scale has a negligible effect; therefore, it is dropped from the calculations (see Sec. 3.4.3 for 

more details). Finally, the estimates of house prices can be converted to the price scale by 

exponentiating the fitted value plus an adjustment for efficiency. Details can be found in 

Sec. 3.4. 

Mixed Effects Mode l 

The second model is a modified version of the two-way fixed effects model. The house effects 

{pci) are now modeled as random while the quarter effects (ft) and mean fi remain as fixed 

parameters. The resulting model is: 

Vi,j = M + a% + Pt(i,j) + £i,j (5-3) 
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where oij ~ A/"(0,cr^j and £j j ~ A/ (0 , cr|) for houses i from 1 , . . . , / and sales j from 

1 , . . . , J j . This is a standard two-way mixed effects model. 

The parameters to be estimated are: (3, a^, and o2
a. To obtain predictions, we compute 

estimates for the random effects, a, using the Best Linear Unbiased Predictor (BLUP), 

which is a plug-in estimator. The formula assumes that the variance components, a\ and 

<7 ,̂ are known; however, we will use the estimated values. Let X and W be the design 

matrices for the fixed and random effects respectively and y the response vector. Using 

Robinson's notation (1991) we can write the variance of random effects and error as follows: 

Var 
a 

£ 

^h 

0 

0 

IN 

(5.4) 

where I is the identity matrix and / and N are the number of houses and observations 

respectively. To obtain estimates of f3 and a, i terate between the following equations: 

p = (X'X) ' X ' f y - W a ) 

d = ( w ' W + ^ - I / ) ( W X / 3 - Z ' y 

(5.5) 

(5.6) 

For a full derivation, see Appendix E.2.2. 

We have included this model as it is a natural extension of the model in (5.1). Moreover, 

random effects models exploit shrinkage techniques. When simultaneously estimating many 

means, it is often advantageous to shrink estimates in order to obtain better estimates. To 

fit this model, the R package lme4 was used. Adding the random effects component adds 

significantly to the computing time. The index is constructed according to (5.2) and the 

method of converting the fitted values into the price scale can be found in Sec. 3.4. 
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S&P/Case-Shiller® 

This model was outlined in Sec. 4.2.3. For all traditional repeat sales methods, model fitting 

requires the manipulation of large, sparse matrices. To ease computation, the conjugate 

gradient algorithm is used to solve linear systems quickly. Appendix C.2 describes this 

algorithm. Unlike the commercial version, we will compute a quarterly index. Moreover, the 

commercial procedure weights observations by their original sale price along with the weights 

computed in the second stage of the procedure. We omit this additional weighting scheme 

in our computations. Finally, we do not screen homes for signs of significant renovation or 

degradation as we have no means of doing so. 

An advantageous feature of repeat sales indices is that it automatically creates an index 

where the fist t ime period is the base period. The price index for the first period, thus, is 

always one. To change the base period, divide each price index by the index of the new 

base period. 

Finally, to estimate the prices in the test set, we simply do the following: 

y. _ B«ij-1) Y . , 

Bt(i,j) 

where Yij is the price of the j t h sale of the i th house and Bt is the price index at time t. 

Note that this model is fitted on the price scale and not the log price scale. Finally, training 

set sizes for this model are given in Table A.3. 
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5.4.2 Prediction 

To compare predictive performance, the root mean squared error (RMSE) is computed for 

predictions on the test set. The RMSE provides us with an estimate of the precision of our 

predictions; smaller values imply a higher value of precision. This quantity is computed 

using the equation below: 

RMSE = \^E(^-^)2 (5'7) 
\ fc=i 

where N is the number of observations in the test set, Y& is the observed price, and Yk 

is the predicted price. We hope that the autoregressive model will perform the best since 

we are taking into account the time series aspect of the data. Furthermore, we expect the 

random effects model to perform well, and the remaining two models to perform similarly. 

The random effects model should be performing better than the fixed effects model simply 

because we are allowing the house-specific estimates to shrink towards the overall mean. 

Shrinking parameter estimates is generally beneficial when there are several means to es­

timate; for these data, we have thousands! As long as the variability among the homes is 

greater than the variability among sales of a specific home, this hypothesis should hold. 

Neither the S&P/Case-Shiller® nor the fixed effects model allows for shrinking. 

In Table 5.3, the RMSE values for the test set are provided for each of the four models. 

The method with the lowest RMSE value is highlighted in bold font for each city. Note 

that the S&P/Case-Shiller® RMSE is missing for Kansas City, MO because during the 

second stage of analysis, some of the computed weights were negative which prevented 

the procedure from continuing (RMSE was 8,842,578,554 for the second step due to an 

astoundingly large number of outliers). 

For seventeen out of the twenty areas, the autoregressive model provides the lowest RMSE 
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Table 5.3: Test Set RMSE for Global Models (in dollars) 
Metropolitan Area 

Ann Arbor, MI 
Atlanta, GA 
Chicago, IL 

Columbia, SC 
Columbus, OH 

Kansas City, MO 
Lexington, KY 

Los Angeles, CA 
Madison, WI 

Memphis, TN 
Minneapolis, MN 

Orlando, FL 
Philadelphia, PA 

Phoenix, AZ 
Pittsburgh, PA 

Raleigh, NC 
San Francisco, CA 

Seattle, WA 
Sioux Falls, SD 

Stamford, CT 

AR 
44,362 
33,977 
39,201 
36,376 
27,651 
24,963 
21,501 
41,006 
28,687 
25,069 
33,233 
29,317 
34,811 
30,231 
26,507 
26,563 
50,777 
42,329 
20,190 
61,805 

S&P/C-S 
52,718 
35,482 
42,865 
42,301 
29,863 

— 

21,731 
41,951 
30,640 
25,267 
34,787 
30,158 
35,692 
29,350 
30,135 
26,775 
50,249 
43,486 
21,577 
68,132 

Mixed Effects 
48,332 
36,205 
42,090 
38,545 
29,840 
26,114 
21,699 
40,489 
30,573 
25,589 
34,535 
30,727 
35,410 
30,268 
28,772 
27,632 
49,238 
43,513 
21,231 
62,079 

Fixed Effects 
54,827 
37,245 
43,405 
42,978 
31,553 
28,369 
21,879 
41,484 
32,361 
25,838 
36,847 
31,525 
35,822 
29,695 
31,473 
28,141 
50,429 
44,864 
22,503 
66,399 

values. The random effects model performs better for Los Angeles, CA and San Francisco, 

CA whereas the S&P/Case-Shiller® performs best only for Phoenix, AZ. In the case of 

Phoenix, AZ both the autoregressive model and the random effects model perform less 

well. 

5.4.3 The Regression Assumptions 

There are number of assumptions we have placed on the error term especially to ensure 

that the model is stationary for the autoregressive model. In this section, we will examine 

a variety of residual plots for all four methods to see how well the assumptions are satisfied. 

All of the plots in this section are for Columbus, OH. To start, we plot a residual by 
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predicted plot along with a residual by gap time plot in Fig. 5.4. In these set of plots, 5% 

of the observations in the training set have been randomly selected for plotting. Although 

the S&P/Case-Shiller® model is computed on the price scale, residuals on the log scale are 

given for comparison purposes for this figure only. 

In Fig. 5.4, we see tha t the fixed and mixed effects models have the narrowest band of 

residuals. This is because both of these models have a house effect component and we are 

looking at the training set residuals. As we saw in the previous section, despite the promising 

look of this plot, neither of these models performed better than the autoregressive model 

overall in a predictive sense. 

In Figs. 5.5-5.7, the residuals are checked for normality. Both a normal quantile plot and 

a histogram of the residuals are shown. For the two repeat sales models, several gap times 

are chosen and the residuals from those gap times are plotted as the variance of the residual 

changes with gap time for both models. None of the four models, unfortunately, seem to 

satisfy the normality assumption well. 

The final set of plots in Fig. 5.8 are plots of the variance of the residuals for each gap 

length. The curve added to the plot is the expected variance based upon the model fit­

ted. For the autoregressive model, the expected variance is a function of the gap length: 

EV
 1_,2 '-. For the mixed effects and fixed effects models, the residuals are expected to be 

homoscedastic. This constant variance is estimated by computing the mean squared error 

of the predictions. The S&P/Case-Shiller® method assumes tha t residuals have variance 

2 a | + 7(2, j)(7y where a% is the variance at tr ibuted to the Gaussian random walk. The 

two variance components are estimated when running the second stage of the method. For 

Columbus, OH, o\ = —248,918 and <r̂  = 9,179,081. Note that a^ was actually estimated 

to be negative. The method does not prevent such a situation from happening. 
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The variance of the residuals clearly increases with gap time so the fixed effects and mixed 

effects models fail to capture this feature of the data. The S&P/Case-Shiller® also does not 

capture the trend in the variance although it does expect one to exist. The autoregressive 

model is best among the four models at describing the variance of the residuals. 

62 



www.manaraa.com

Figure 5.4: Residual Plots for Columbus, OH (log scale) 
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Figure 5.5: Normality of Residuals for Autoregressive Model (Columbus, OH) 
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Figure 5.6: Normality of Residuals for S&P/Case-Shiller® (Columbus, OH) 
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5.7: Normality of Residuals for Fixed and Mixed Effects Models (Columbus, 
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Figure 5.8: Variance of Residuals for Competing Models (Columbus, OH) 
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5.4.4 Comparing Indices 

Each model can be used to construct a price index. To this collection, we add one more: 

the mean index. This is computed simply by taking the average price for each quarter 

and rescaling so that the base value is one (as given in Sec. 3.4). In Fig. 5.9, we plot all 

five indices for Columbus, OH. A complete set of indices is available in Appendix D in 

Figs. D.5- D.8. Observe that for smaller metropolitan areas, such as Sioux Falls, SD, where 

there are fewer observations per quarter, the indices are more volatile. 

As we saw in Fig. 4.1, the indices plotted in Fig. 5.9 track each other even though the 

level of the indices are not the same. That is, they follow the same trends. In general, 

our autoregressive model index is between the mean index and the computed S&P/Case-

Shiller® index. The mean index treats every sale as a single sale. This also explains why the 

mean index is the most volatile as information is not shared across houses and time periods. 

On the contrary, the S&P/Case-Shiller® index only uses repeat sales observations ignoring 

all single sales. The autoregressive model, however, is essentially a weighted average of both 

single sales and repeat sales. On the premise that we know more about repeat sales homes 

than those homes that have only sold once, repeat sales homes are weighted more heavily. 

The commercial S&P/Case-Shiiler® is computed for a number of MSAs across the US. 

Among the cities in our data, Atlanta, GA, Chicago, IL, Los Angeles, CA, Minneapolis, 

MN, San Francisco, CA, and Seattle, WA are also computed commercially. To compare 

the S&P/Case-Shiller® calculated using the available data and the published index, see 

Fig. 5.10. This plot shows the two indices for Chicago, IL. Note that the base year has 

been changed to January 2000. The two indices are quite similar although there are some 

variations most likely accounted by differences in the available data. Recall that the house 

sales used in this analysis are only those approved for conventional mortgages. However, 

given that there is not a staggering difference between the two Case-Shiller indices, we 
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Figure 5.9: Comparing Indices (Columbus, OH) 
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believe that the conclusions obtained from our analysis are applicable to the overall housing 

market. 

5.5 A Closer Look at Los Angeles, CA 

As seen in Table 5.3, the mixed effects model has a lower test RMSE than the autoregressive 

model for Los Angeles, CA. Why does the proposed model perform poorly for this city? If 

we examine Fig. 5.11, a plot of the correlation against gap time, we immediately see two 

significant issues. Recall that we expect 4> to be close to one. For Los Angeles, CA, this does 

not seem to be the case. In fact, according to the data, for short gap times, the correlation 

between sale pairs seems to be much lower. 

To explain this feature, we look at sale pairs with gap times between 1 and 5 quarters 

more closely. In Fig. 5.12, we create a histogram of the quarters where the second sales 

occurred when the gap time was short. We pair this histogram with a plot of the price index 
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Figure 5.10: Actual vs. Computed S&P/Case-Shiller® Index 
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Figure 5.11: Problems with Assumptions 
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for Los Angeles, CA. Most of these sales occurred during the late 1980s and early 1990s. 

This corresponds to the same period when lenders were offering people mortgages where 

the monthly payment was greater than 33% of their monthly income [43]. The threshold of 

33% is set to help ensure that people will be able to afford their mortgage. Those people 

with mortgages that exceede this percentage have a higher probability of defaulting on their 

payments. A number of banks including Bank of California and Wells Fargo were highly 

exposed to these risky investments especially in the wake of the housing downturn during 

the early 1990s [2]. If a short gap time is an indication tha t a foreclosure took place, this 

would explain why these sale pairs are not highly correlated. 

The second problem with Fig. 5.11 is that the AR(1) process does not decay at the same 

rate as the model predicts. In 1978 California voters, as a protest against rising property 

taxes, passed Proposition 13 which limited how fast property tax assessments could increase 

per year. Galles and Sexton (1998) argue that Proposition 13 encourages people to stay in 

their homes and not move especially if they have owned their home for a long time [15, p. 

124]. It is possible tha t this feature of Fig. 5.11 is a long term effect of Proposition 13. On 

the other hand, it could be that California home owners tend to renovate their homes more 

frequently than others reducing the decay in prices over time. However, we have no way 

of verifying either of these explanations given our data. Nevertheless, these two issues lead 

us to conclude that the proposed autoregressive model is not a good description for home 

sales in Los Angeles, CA. 

5.6 Comparing Repeat Sales Indices 

In Sec. 5.4, we showed tha t the autoregressive model has the best overall predictive per­

formance compared to the S&P/Case-Shiller® model. In this section, we investigate why 
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ure 5.12: Examining the Housing Downturn 
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this may be the case. In particular, we want to show tha t the proposed autoregressive 

model is truly superior to existing repeat sales methodology and not just because of the 

methods used to fit the model. Specifically, we want to exclude the following four issues 

from explaining the difference in results: 

1. Using price instead of log price. For skewed variables such as income, models are gen­

erally fitted on the log scale. House prices follow a similar asymmetrical distribution 

which can be seen in Fig. 5.13. The top plot is a histogram of prices for Stamford, 

CT for all home sales in the second quarter of 1997; the second is the same but for 

log prices. It is clear tha t the logarithmic transformation creates a more symmetric 

distribution. 

2. Modeling price differences instead of price. 

3. Weighting the observations with estimated standard deviations instead of estimated 

variances. Recall tha t the Case-Shiller methods have regression coefficient estimates 

which are not BLUE because of the weights chosen for each observation. 

4. Modeling the sale series as a random walk. 

A simple way of exploring these questions is to compare the autoregressive (AR), BMN, 

Case-Shiller (C-S), and S&P/Case-Shiller® (S&P/C-S) models in terms of predictive per­

formance. In Table 5.4, we provide the test RMSE results for each method. The lowest 

RMSE value for each city is given in bold font. There are two features to note here. First, 

the three existing repeat sales methods have RMSE values which are quite similar to each 

other. Hence, the "improvements" made to the BMN model by the two Case-Shiller meth­

ods seem to result in only minor changes to the RMSEs. Second, and more importantly, 

the autoregressive model performs better than the other three models for eighteen out of 

the twenty cities. We find, therefore, tha t the autoregressive process itself is the key to 

improving repeat sales methodology. 

73 



www.manaraa.com

Figure 5.13: Prices Versus Log Prices 
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Table 5.4: Test Set RMSE for Global Models (in dollars) 
Metropolitan Area 

Ann Arbor, MI 
Atlanta, GA 
Chicago, IL 

Columbia, SC 
Columbus, OH 

Kansas City, MO 
Lexington, KY 

Los Angeles, CA 
Madison, WI 

Memphis, TN 
Minneapolis, MN 

Orlando, FL 
Philadelphia, PA 

Phoenix, AZ 
Pittsburgh, PA 

Raleigh, NC 
San Francisco, CA 

Seattle, WA 
Sioux Falls, SD 

Stamford, CT 

AR 
44,362 
33,977 
39,201 
36,376 
27,651 
24,963 
21,501 
41,006 
28,687 
25,069 
33,233 
29,317 
34,811 
30,231 
26,507 
26,563 
50,777 
42,329 
20,190 
61,805 

BMN 
53,709 
35,456 
42,923 
42,207 
30,176 
27,682 
21,748 
41,918 
30,979 
25,311 
35,402 
30,187 
35,567 
29,295 
30,732 
26,873 
50,513 
43,533 
21,527 
67,661 

C-S 
53,914 
35,494 
42,960 
42,263 
30,196 
27,724 
21,740 
41,949 
30,942 
25,306 
35,538 
30,215 
35,637 
29,334 
30,812 
26,856 
50,573 
43,606 
21,576 
67,668 

S&P/C-S 
52,718 
35,482 
42,865 
42,301 
29,863 

— 

21,731 
41,951 
30,640 
25,267 
34,787 
30,158 
35,692 
29,350 
30,135 
26,775 
50,249 
43,486 
21,577 
68,132 
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Chapter 6 

The Local Autoregressive Model 

The autoregressive model proposed in Chapter 3 applies a single model for the entire 

metropolitan area. For larger cities such as Chicago, IL and Atlanta, GA this assump­

tion may not hold; rather, there may be spatial effects. In this chapter, we a t tempt to 

capture such effects by introducing zip codes into the autoregressive model. As an initial 

test, we run separate autoregressive models for the zip codes in Atlanta, GA. The resulting 

indices are plotted in Fig. 6.1. There are clear differences among the indices. The next 

step, then, is to build a model which incorporates this variable. 

We add zip code as a random effect into the existing model. The resulting model is: 

Vi,i,z = f* + Pt(i,i,z) +rz + £i,i,z j = l 
(6.1) 

Vi,j,z = V + Pt(ij,z) +Tz + </>7(lJ,2) (yij-i,z ~ i" - flt(ij-hz) ~ Tz) + £i,j,z J > 1 

where yttjtZ is the jth log price of the i th house in zip code z. There are a total of N = 

^2z-i Yli=i Ji observations in this model where there are Z zip codes, Iz houses in each zip 

code, and J\ sales for a given house. Let TZ ~ M (0, o^) where T\,...,TZ are the zip code 

75 



www.manaraa.com

Figure 6.1: Indices for All Metropolitan Areas 

Price Indices by Zip Code (Atlanta, GA) 

Jul 1985 Apr 1990 Jan 1995 

Quarter 

Oct 1999 Jul 2004 

random effects. Let /3I,...,/3T denote the log price indices which remain as fixed effects. 

However, we impose the restriction that 5Zt=i ntfit = 0 where nt is the number of sales at 
... / 

time t. This allows us to interpret \x as the overall mean. Finally, let £i,i,z ~ M I 0, y^ 
iid r ( <72(l-02')'(i'.>»')\ 

£i.i.z ~ J\ I 0, - ^ — Y ^ I I > a n d assume that all e,j are independent. 

7 > 

"*J>Z 

6.1 Time Series Models With Covariates 

To provide some background, we now describe an algorithm proposed by Sargan (1964) for 

fitting a regression model with autocorrelated errors. For this setting, the general model to 

be fitted is: 

y = X/3 + e (6.2) 
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where £ is a time series process with covariance matrix V . For simplicity, assume tha t the 

errors follow an AR(1) process with autoregressive coefficient 4>. Furthermore, assume we 

have three observations: E\,E2,£z- Then, e ~ A/"(0, V ) where V is: 

V = 

1 

Sargan defines a transformation matrix A such that AVA' = a^l.2 where I2 is an identity-

matrix of dimension 2. By applying this transformation to the model, we obtain: 

A y = AX/3 + Ae (6.3) 

The original regression with autocorrelated errors has now been reduced to an ordinary 

regression with iid errors. In our example, A , as Sargan defines it, is: 

A = 
-<$> 1 0 

0 - < b 1 

Therefore, A e ~ TV (0,0^12). Applying this trick, Sargan outlines a procedure which 

iterates between estimating the autoregressive parameters and the regression parameters 

on the transformed data. If the time series process is stationary, the algorithm has been 

proved to converge to the maximum likelihood estimates as N —> 00 [42, p. 293]. 

The key to this method is defining the appropriate transformation matrix A. In our 

scenario we need to make two changes to Sargan's definition. The first is obvious: we 

must incorporate the random effects into the model. This complicates matters because the 

covariance matrix V is now comprised of two components: the random effects variance and 

the error term variance. Applying A to V will affect both components and we will not be 

able to reduce V to the identity matrix as before. In addition, the best linear unbiased 
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estimates (BLUP) for the random effects need to be computed which adds a step to the 

fitting algorithm. 

Second, this procedure only provides the maximum likelihood solution when the number 

of observations in the series is large. Sargan's definition of A makes this so. Note that the 

transformation matrix drops the first observation by construction. This is done to achieve 

the desirable property of AVA' = o^I/v-i- As the number of time periods increase, the 

first observation has an increasingly negligible effect on the parameter estimates. Thus, the 

parameter estimates become closer to the MLEs as the sample size, N, increases. However, 

since our price series for each house is short, we cannot afford to overlook this point. We 

describe a modified version of A next. 

Suppose there are three sales of house i at time 1,3, and 5. The covariance matrix for 

this series would be fif there were no random effects): 

V = crt 

1 02 </>5 

b2 1 03 

65 d>5 1 

If we retain the first observation, the transformation matrix would now be: 

0 0 
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Applying the transformation to the data, we obtain: 

AVA' = 
l-</>2 

1 0 0 

0 l-</>4 0 

0 0 1 - 0 6 

1 0 0 

0 1 - 02T(i.2) 0 

0 0 1 - 0 2 ^ ' 3 ) 

where j(i,j) is the gap time between the j t h and (j — l)s t sale of house i. Denote AVA' 
2 

Y^hpdiagir) where diag(r) is a diagonal matrix of dimension N where 

ri,j,z ~~ 

1 when j — 1 

1 _ ^27( i j) w h e n j > i 
(6.4) 

where r , j i Z denotes the element of diag(r) for the jth sale of the i th house in zip code z. 

Thus, we have redefined A to include the first term of the series. A similar solution has 

been proposed by Prais and Winston (1954) for the AR(1) setting. Recall, for a stationary 

AR(1) process with a starting point, the first observation is given by w\ — , E\ where 

£i ~ M (0, a\). Therefore, to accommodate the first observation, and preserve the reduction 

property: AVA' = CT^IJV, they propose multiplying the first observation by . 1 . Beach 

and MacKinnon (1978) point out, however, tha t this gives the MLE only when <f> is already 

known. This is because the Prais and Winston procedure uses generalized least squares to 

fit both components of the model [3, p. 51]. For our purposes, however, we have no need 

for the reduction property to hold given the introduction of the random effects. 
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6.2 Introducing the Random Effects 

We can now describe the model in (6.1) using matrices: 

Ay = AX/3 + AZr + Ae (6.5) 

where y is log price, X and Z are the design matrices for the fixed effects \n (3\ • • • /?r-i] 

and random effects r respectively. Let £ be the random variation, and A the transformation 

matrix. Now, As ~ M (0, j^^diag(r)j. From hereon, we let e denote Ae to simplify the 

notation. Furthermore, recall that we require Ylt=l ntftt = 0 where nt is the number of sales 

at time t. Therefore, /?r = —— ^2t=i ntftt-

If we define 6 = {/3, of, of, </>}, the likelihood function for (6.5) is: 

L (0 ;y ) = ( 2 ^ ) - A r / 2 | V | - 1 / 2 e x p | - ^ ( A ( y - X / 3 ) ) ' V - 1 ( A ( y - X / 3 ) ) | (6.6) 

where N is the total number of observations, V is the covariance matrix, and A is the 

transformation matrix. We can split V into a sum of the variance contributions from the 

time series and the random effects. Specifically, 

2 
V = T^2dia9(r) + (AZ)D(AZ)' (6.7) 

where D = o\\z-

The matrix V is an N x N matrix which, given the size of our data sets, is incredibly 

large making it nearly impossible to manipulate. Fortunately, V is a block-diagonal matrix 

where each block contains the observations of a given zip code. 

As an example, let us use the sample data given in Table 6.1. We have four homes in 

80 



www.manaraa.com

Table 6,1: Sample Data 
House 

1 
1 
2 
2 
3 
3 
3 
4 
4 

Quarter 
1 
3 
2 
3 
1 
2 
3 
1 
3 

Zip 
1 
1 
1 
1 
2 
2 
2 
2 
2 

this data set, with sales over three time periods. The sales are divided into two zip codes. 

In this case, V has the form: 

where V^i is: 

V = 
Vi. i 0 

0 V2i2 

V = 

+< 

1 0 0 0 

0 1 - 04 0 0 

0 0 1 0 

0 0 0 I-(f)2 

1 1 - 0 2 

1 - 0 2 ( 1 - 0 2 ) 2 

1 1 - 02 1 

1 - 0 (1 - </>) (1 - 02) 1 - 0 

1 

1 

1 - 0 

(1 - 0) (1 - 02) 

1 - 0 

(1 - 0)2 

This structure is important because the blocks of a block diagonal matrix can be treated 
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as independent of each other. In particular, for a block diagonal matrix with Z blocks, 

| V | = n | V ^ | and V-x = 

V.J 

Vzi 

(6.8) 

where | • | is the determinant of a matrix. 

For the zth block (zth. zip code), let yz be the vector of log prices, X z be the design matrix 

for the fixed, time effects, Az be the transformation matrix, and Vz,z be the covariance 

matrix. If we reduce V to block form, where VZ}Z denotes the block for zip code z, the 

likelihood function can be rewritten as follows: 

N 1 Z 

KO;y) = - T l o g ( 2 ^ ) - - ^ l o g | V ^ | 
2 = 1 

1 z 

-- ]T(A,(y, - Xzp))'V-l(Az(yz - Xz(3)) 
2 = 1 

We can reduce (6.7) into block form as well: 

V 2.2 
o-: 

1-62 diag(rz) + a2
T (A z l n J ( A 2 l n j ' 

where nz is the number of observations in zip code z. 

6.3 Model Fitting 

(6.9) 

(6.10) 

Just as for the global autoregressive model, we use the coordinate ascent algorithm to 

estimate the parametersalbeit with more complex equations. The derivations for updating 

the parameters are given in Appendix E . l . For (3, we can derive an explicit expression; for 
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the remaining three parameters, we have to numerically compute the zero of the partial 

derivative functions. This procedure is given next: 

Local AR Model Fitting Algorithm 

1. Set a tolerance level e (possibly different for each parameter) and a maximum number 

of iterations K. 

2. Initialize the parameters: 9° = I (5 , o-£' , ay' , (fP > (for details see end of section). 

3. For iteration k, 

(a) For t G { 1 , . . . ,T} , calculate (3k using (6.11). That is, 

(b) Compute ae' by computing the zero of (6.12) using </3 , ay' , </> [• 

(c) Compute oy' by calculating the zero of (6.13) using <f3 ,a£' ,cf)k~1 >. 

(d) Find the zero of (6.14) to compute 4>k using </3k,a£' ,aT' > 

(e) If dh-i _ Qk > e for any ^ e f l and the number of iterations is less than K, 

repeat Step 3 after replacing 6 _ 1 with 6 . Otherwise, stop (call this iteration 

K' where K1 <K). 

4. Solve for /3T by computing: J3T = - ^ J2j=i ntfif • 

5. Plug in {f3K',ae'K',al'K',(f)K'\ to compute the BLUPs using (6.15). 

Before we provide the updating functions, define w x = y 2 — X z /3 . We start with an 

explicit function for j3. 

P = (j2(AzXz)'V-lAzXz) ^ ( A . X ^ ' V ^ - ^ ^ . (6.11) 
Vz=l / z=l 
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To update a2, we must compute the zero of: 

0 = -^tr{V-ldiag(Tz))+^(Azwxyv-ldiag(Tx)V-^Axwz) (6.12) 
2 = 1 2 = 1 

where tr(-) is the trace of a matrix. Similarly, to update a2, we need to find the zero of: 

0 = J X ^ t A . l n J t A ^ J ' ) 
2 = 1 

z 
+ ^ - ( A 2 w z ) ' V - ' ( A , l n J ( A z l n J ' V - , ( A 2 w , (6.13) 

z = i 

Finally, to update the autoregressive parameter 0, we have to calculate the zero of the 

function: 

0 = ~!>{V"W l f^2 f d{Azlnz)\ , 2 ^fd(AglT 

( A z l n J + c J T ( A 2 l n / 

2<K2 

(1 - (f)2)2 

z 

diag(rz) 

d<f> 

a2 ddiag(rz 

l-4>2 d<f> 

z 

V d<t> 

/ , r - l ^ A 2 £ ( ^ w * ) ' v*"2(A*w«) - E(A^)'v.";i ( â  
• w . 

•E 
2 = 1 L 

( A a w z ) ' y '•\7—1 
2 , 2 0e(^A4^> i(A,i„.r+^(A,in .^a ( A*1»^ 

a</> a</> 
2<fta£ _,..._,_. x , ^s ddiag(rz) 

( 1 - ^ ,2^2 diag(rz) + 
1 - 02 30 

V7*(Aaw*) (6.14) 

After the estimates converge, the final step is to estimate the random effects using the 

(BLUP) formulas: 

| f + ( l - 4>2) (kzlz)'diag-r (rz) ( A , 1 * ) 

(7l - 02) (A.l^'dm^1 (r2) (A2w2)) . (6.15) 
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where diag 1 (r) is the inverse of the estimated diagonal matrix diag(r). A derivation for 

this formula can be found in Appendix E.2.1. 

Sample Initialization for Local Model 

While any set of starting values can be used, it is faster to use the following initializations. 

We start with fx: 

z=l i= l j = l 

Using fjP, we can compute starting values for the remainder of the time effects: 

ft = ^•EE&w.*)=t(wj>-/ '0) 

where ^t(i,j,z)=t *s a n indicator function denoting whether the observation yijtZ occurred at 

time t. 

To obtain an initial value for a2., we first calculate estimates of the random effects: 

»=i j = i 

where nt is the number of observations at time t. Hence, 

a2/ = Var(r°) 

where Var(-) is the sample variance function. 

Finally, let VitjtZ — y%,j,z~ P^u • z\ ~
Tz- For e a c n gaP time h, find all pairs (x/i,i = Vij-i.zi 
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Xh,2 — vi,j,z) such that i(i,j) = h. Let H be the maximum gap time. Then, estimate <fi 

and a\ by: 

1 H 

a}0 = Var(x) 

where Cor(-, •) is the sample correlation function. 

6.3.1 Convergence of the Fitting Algorithm 

Given the structure of our model, it is unclear whether the MLEs exist and are unique and 

if the fitting algorithm will reach these values. We repeat the empirical analysis done in in 

Sec. 3.3.2 for the local model. The results from Stamford, CT are used as an example here. 

In Fig. 6.2, we plot the log likelihood value for at step of the fitting process. As hoped 

for, the log likelihood value never decreases at any step. This indicates that the fitting 

algorithm is always heading towards parameter estimates that are more likely given the 

data. 

As before, the parameter which may not converge to the MLE is <j>. We plot for each </>, 

the log likelihood value if we maximize with respect to the remaining parameters. If the 

coordinate ascent algorithm converges to the MLE, it should match the maximum point on 

Fig. 6.2 which it does. Therefore, we are confident that the MLE is reached. 
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Figure 6.2: Plot of the Local Log Likelihood Function 
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6.4 Additional Computations 

Converting Back to the Price Scale 

To predict a log price we simply plug in the estimated parameters into (6.1): 

Vij,z = A + Pt(ij,z) +rz + f1^^ [yij-i,z - A - % j - i , z ) - Ti) (6-16) 

To convert this prediction back to the price scale, we exponentiate the prediction above 

with the adjustment for efficiency. We use the same procedure as outlined in Sec. 3.10. 

Constructing an Index 

The price index can be constructed as follows: 

1, exp {ft - ft} , exp {ft - ft} , . . . , exp {/3r - ft} . (6.17) 

We can also incorporate the zip code effect as a multiplier to the index above. That is, we 

can compute an index for each zip code z relative to the global index: 

exp {fz} , exp {ft + fz - ft}, exp | / 3 3 + fz - ft J , . . . , exp j f t ' + fz - ft] (6.18) 

As before, an adjustment for efficiency is omitted since the standard errors of the parameters 

are too small to have a noticeable effect on the indices. 
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Chapter 7 

Results for Local Models 

In this chapter, we analyze the results and check model assumptions for the local autore-

gressive model introduced in Chapter 6. We start by examining the estimated parameters 

and end with comparing the local model with an alternate mixed effects model. As hoped, 

the local autoregressive model seems to describe the data better than the other models 

previously discussed. A complete set of plots can be found in Appendix F. 

7.1 Parameter Estimates for the Local Model 

In Table 7.1 the estimates for the overall mean /i, autoregressive parameter <f>, the variance 

component of the time series erf, and the variance of the random effects a^. are provided 

for each metropolitan area. Similar to the local model, the estimates for c/> are close to one; 

however, the estimate for the local model is lower than for the global model for all cities. 

Furthermore, there seems to be a negative correlation between /i, interpreted as the overall 
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Table 7.1: Estimated Values of Parameters for Local Model 
Metropolitan Area 

Ann Arbor, MI 
Atlanta, GA 
Chicago, IL 

Columbia, SC 
Columbus, OH 

Kansas City, MO 
Lexington, KY 

Los Angeles, CA 
Madison, WI 

Memphis, TN 
Minneapolis, MN 

Orlando, FL 
Philadelphia, PA 

Phoenix, AZ 
Pittsburgh, PA 

Raleigh, NC 
San Francisco, CA 

Seattle, WA 
Sioux Falls, SD 

Stamford, CT 

fi 4> o2
e o l 

11.6643 0.993247 0.001567 0.11045 
11.6882 0.992874 0.001651 0.070104 
11.8226 0.992000 0.001502 0.110683 
11.3843 0.997526 0.000883 0.028062 
11.4919 0.994269 0.001258 0.082476 
11.4884 0.993734 0.001462 0.121954 
11.6224 0.996236 0.000968 0.048227 
12.1367 0.981888 0.002174 0.111708 
11.7001 0.994318 0.001120 0.023295 
11.6572 0.994594 0.001120 0.101298 
11.8327 0.992008 0.001515 0.050961 
11.6055 0.993561 0.001676 0.046727 
1107472 0.992111 0.001588 0.179636 
11.7022 0.992349 0.001543 0.106971 
11.3408 0.992059 0.002546 0.103488 
11.7447 0.993828 0.001413 0.047029 
12.4236 0.985644 0.001788 0.056201 
11.9998 0.989923 0.001658 0.039459 
11.6025 0.995262 0.001120 0.032719 
12.5345 0.987938 0.002294 0.093230 

mean log price, and (j). In particular, for the coastal cities Los Angeles, CA, San Francisco, 

CA, Seattle, WA and Stamford, CT, <f> is lower while fi is higher when compared to the 

remaining cities. 

Using the procedure outlined in Sec. 5.3, we evaluate how well the AR(1) assumption 

applies to the data. The correlation between sale pairs with the same gap time are computed 

and plotted. The predicted relationship between <f> and gap time is then overlayed. In 

Fig. 7.1, an example of such a plot is shown for Columbus, OH. If we compare this plot to 

the equivalent plot for the global model (Fig. 5.3), we find there is a negligible difference 

between the two. This the case for nearly all of the cities; these plots can be found in 

Appendix F. 
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Figure 7.1: 0 vs Gap Time for Local Model (Columbus, OH) 
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Recall, we computed the zip code effects using the BLUP formulas. In the derivation, 

the random effects are assumed to be normally distributed. In Fig. 7.2, the zip code effects 

for Minneapolis, MN are examined for normality. Recall that shrinkage estimation becomes 

increasingly beneficial the more zip codes there are. Minneapolis, MN has a total of 214 zip 

codes, or random effects, and we find the normality assumption to be well satisfied. Note, 

however, that the AR(1) assumption also holds well for this city. We find that for those 

cities where the data are well described by the model, the distribution of the random effects 

is closer to normal. 

* less than 20 pairs 
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Figure 7.2: Normality of Random Effects: Minneapolis, MN 
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7.2 Validation of Local Models 

We apply the local AR model to the test sets for each of the twenty cities. The RMSE for 

the test set is used to evaluate predictive performance in Sec. 7.2.2. The price indices and 

residuals obtained from the model are also analyzed. For comparison purposes, a mixed 

effects model is proposed which is simply an extension of the mixed effects model presented 

in Sec. 5.4.1. Details are given next. 

7.2.1 Mixed Effects Model 

In Sec. 5.4.1, we introduced a mixed effects model where houses effects were modeled as 

random and time effects were fixed. We repeat that model here while adding a second 

random effect: the zip code. This model is as follows: 

ViJ,z ^ + ai + Tz
J
r /3t(i,j,z) + £i,j,z (7.1) 
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where a, ~ J\f(0, a^), TZ ~ AT (0, of), and £jj ~ A/̂ O, of) for houses i from 1 , . . . , Iz, sales 

j from 1 , . . . , Ji, and zip codes z from 1 , . . . , Z. As before, [i is a fixed parameter. 

The estimates for (3, a, and r can be found by iteratively using the following formulas: 

/3 = ( X ' X ) _ 1 X' (y - W a - Z T ) 

^§-1/ + W W ) W (y - X/3 - Zt\ 

t = (^\Z + Z'Z\ Z ' ( y - X ) 9 - W a ) 

These expressions are derived in Appendix E.2.2. 

To predict the log prices, we plug in the estimates: 

Vi,j,z = P- + Pt(i,j,z) + &i+Tz (7.2) 

The procedure in Sec. 3.10 is used to convert these predictions back to the price scale. 

Finally, to construct a price index, the procedure in Sec. 6.4 is used. 

7.2.2 Results 

To compare performance across models, the RMSE for the test set observations are calcu­

lated. These results are listed in Table 7.2; we add the RMSE results from the global AR 

model for further comparisons (these values are taken from Table 5.3). The model with the 

lowest RMSE value is given in bold font. Test RMSEs are not available for Chicago, IL, Los 

Angeles, CA, and Philadelphia, PA. It is clear that the local AR model not only performs 

better than the benchmark local mixed effects model, but also provides better predictions 

than the global AR model for nearly all the cities. 
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Table 7.2: Test Set RMSE for Local Models (in dollars) 
Metropolitan Area 

Ann Arbor, MI 
Atlanta, GA 
Chicago, IL 

Columbia, SC 
Columbus, OH 

Kansas City, MO 
Lexington, KY 

Los Angeles, CA 
Madison, WI 

Memphis, TN 
Minneapolis, MN 

Orlando, FL 
Philadelphia, PA 

Phoenix, AZ 
Pittsburgh, PA 

Raleigh, NC 
San Francisco, CA 

Seattle, WA 
Sioux Falls, SD 

Stamford, CT 

AR (Local) 
41,401 
30,914 
36,004 
35,881 
26,681 
24,179 
21,132 
37,438 
28,035 
24,588 
31,900 
28,449 
33,479 
28,247 
26,406 
25,839 
49,927 
38,469 
20,160 
57,722 

Mixed Effects (Local) 
46,519 
34,912 

-

38,375 
29,674 
25,851 
21,555 

-

30,297 
25,502 
34,065 
30,438 

-

29,286 
28,630 
27,493 
48,217 
41,950 
21,171 
58,616 

AR (Global) 
44,362 
33,977 
39,201 
36,376 
27,651 
24,963 
21,501 
41,006 
28,687 
25,069 
33,233 
29,317 
34,811 
30,231 
26,507 
26,563 
50,777 
42,329 
20,190 
61,805 
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Figure 7.3: House Price Indices for Columbus, OH 
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In Fig. 7.3, we plot indices constructed from the global and local AR models, the mixed 

effects model, and the mean price index for Columbus, OH. Ignoring the mean price index, 

there is not a marked difference among the indices. We find similar results for the cities 

in Figs. In the second plot in Fig. 7.3, the local price index is plotted with the zip code 

multiplier (see Sec. 6.4 for details). 

7.2.3 Residual Analysis 

In this final section, we examine the model assumptions further. For ease of comparison 

with the results in Sec. 5.4.3, we provide results for Columbus, OH here as well. In Fig. 7.4, 

we randomly select 5% of the training set and plot the residuals versus the predictions. We 

also plot the residuals against the gap time for these observations for both local models. As 

before, the mixed effects model has the narrowest residual plot; however, the mixed effects 

model does not perform nearly as well as the AR model for the test set. 
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In Fig. 7.5 and Fig. 7.6 the residuals are checked for normality. The distribution of the 

residuals depends on the gap time for the local model. As a result, normal quantile plots 

are provided for a few different gap times. The normality assumption does not seem fully 

satisfied for all gap times; however, they do indicate an improvement on the global AR 

model (compare with Fig. 5.5). In contrast, the normality assumption fails to hold for the 

local mixed effects model altogether. 

Both the AR and mixed effects models have specific error s t ructures- the former depends 

on gap time so the errors are heteroscedastic, for the latter, error variance is assumed to 

be constant. In Fig. 7.7 the variance of the residuals is plotted against gap time. The 

estimated relationship between the variance and gap time is plotted as well in red. In both 

plots, we see a clear association between the two: as the gap time increases, the variance 

also increases. Unfortunately, while the local AR model does account for the changes in the 

error variance, the estimated relationship does not match the data well. 

96 



www.manaraa.com

Figure 7.4: Local Model Residual Plots for Columbus, OH (log scale) 
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Figure 7.5: Normality of Residuals for Local Autoregressive Model (Columbus, OH) 
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Figure 7.6: Normality of Residuals for Local Mixed Effects Model (Columbus,OH) 

0.3 -

0.2 J 

•& 0.1 -

ro 0.0 -
a 
<D -0.1 -
a. 
£ -0-2 -

-0.3 -

-0.4 -

Normal Q-Q Plot 
(Mixed Effects) 

«•• 
* 

/ ^ 

^s' 

t 
• 

• 
1 1 1 1 1 1 1 

- 3 - 2 - 1 0 1 2 3 

Theoretical Quantiles 

500 -i 

400 -

1" 300 -
CD 
= s 

2 200 -1 
LL. 

100 -

o -

Histogram of Residuals 
(Mixed Effects) 

i i i i 

-0.4 -0.2 0.0 0.2 

Residual 

Figure 7.7: Variance of Residuals for Competing Local Models (Columbus, OH) 
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Chapter 8 

Future Work 

The two autoregressive models proposed seem to describe the data better than the existing 

methods. However, it is clear that there is room for improvement. In this chapter, we 

suggest several directions in which this research can be extended. 

All repeat sales models, including the autoregressive model, are based upon the assump­

tion that the previous sale price encompasses all relevant information about a house. This 

suggests that including hedonic data is redundant. Because the autoregressive method mod­

els prices, it is straightforward to add covariates to test this assumption. Say we have p 

covariates: x\,..., xp. Then, 

Vi,i = A(i,i) + E L l akXk,i,i + £i,i 
(8.1) 

Vi,j = Pt(ij) + E L i akXk,i,j + </>7(*j) {Vij-i ~ A(i,j-i) - 12l=i <*kXk,i,j-i) + £ij 

with the same distribution for £jj as before. This setup allows one to not only include 

homes that have changed between sales, but to also obtain a more precise description of 

single sale homes. The model in (8.1) is a hybrid, similar in style to those proposed by Case 
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and Quigley (see Sec. 4.3). If the parameters a\,..., ap were not significant, we would have 

evidence that hedonic information may indeed be unnecessary. 

Throughout this manuscript, we have taken the gap time between sales to be fixed, not 

random. This simplified the modeling problem. Realistically, however, this is not the case 

and some effort should be focused on incorporating this feature into the model. Moreover, 

gap time may be related to price. For instance, people may wait to sell their homes until 

they feel like they would get a suitably high price. Therefore, it may be inappropriate to 

treat gap times as given. 

We have applied the autoregressive model only to single family home sales. However, 

many different types of residential properties exist from apartments to condominiums. It 

would be interesting to see whether these residential properties could also be described by 

an autoregressive process. 

A final assumption we have made throughout is that prices reflect the true value of a 

house. We could think of a sale price, however, as an estimate of value. Factors unique to 

the particular purchase conditions may add error. That is, 

price = value + error. 

If we introduce this new error term to the autoregressive model, we can describe it as a 

state space model. However, such models often require on a sufficiently long time series to 

obtain parameter estimates. House price series, unfortunately, are quite short although we 

do have many such series in a data set. This suggests that traditional state space methods 

may not be appropriate or even feasible and new methods must be developed. 
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Appendix A 

Data Summary 

The tables that follow provide information about all twenty U.S. metropolitan areas. A 

general description of the data can be found in Chapter 2. Table A. l shows the number 

of total sales and unique houses sold from July 1985 to September 2004 along with the 

breakdown between single and repeat sales. 

The name ZIP stands for "Zone Improvement plan" and is a five-digit code given by 

the United States Postal Service denotes post office facilities around the United States. In 

1981 an extra four digits (ZIP+4) were added to the ZIP code to provide more specific 

information on location [19, p. 126]. Census tracts designate smaller areas than those 

defined by the ZIP code. The United States Bureau of the Census designed each tract to 

have homogeneous populations of 2,500 to 8,000 people when first formed and are grouped 

within counties of a state [26, p. 10-1]. Therefore, unlike the metropolitan areas in the da ta 

set, a census tract does not cross state boundaries. The number of ZIP codes and census 

tracts for each metropolitan area are listed in Table A.2. Note tha t not all ZIP codes or 

census t racts have home sales for each quarter of the sample period. 
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Table A.3 provides the breakdown of the training and test sets for each metropolitan 

area. The first three columns are relevant for the proposed autoregressive models, and 

the benchmark fixed effects and mixed effects models. The final two columns refer to the 

S&P/Case-Shiller® model where only repeat sales are used. Thus the number of sale pairs 

and the total number of unique houses in this reduced training set are given. Keep in 

mind, however, that houses with more than two sales appear in multiple sale pairs. As 

the test set is comprised of final sales, it is the same for all fitted models including the 

S&P/Case-Shiller® method. The procedure used to split the data into training and test 

sets is described in Chapter 5. 
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Table A.2: Zip Code and Census Tract Counts 
City 

Ann Arbor, MI 
Atlanta, GA 
Chicago, IL 

Columbia, SC 
Columbus, OH 

Kansas City, MO 
Lexington, KY 

Los Angeles, CA 
Madison, WI 

Memphis, TN 
Minneapolis, MN 

Orlando, FL 
Philadelphia, PA 

Phoenix, AZ 
Pittsburgh, PA 

Raleigh, NC 
San Francisco, CA 

Seattle, WA 
Sioux Falls, SD 

Stamford, CT 

No. Zip Codes 
57 

184 
317 

12 
96 

179 
31 

280 
40 
64 

214 
96 

332 
130 
257 
82 
70 

110 
30 
23 

No. Census Tracts 
167 
652 

1,751 
29 

360 
472 
107 

2,013 
90 

243 
722 
326 

1,256 
667 
670 
207 
360 
524 

29 
84 
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Appendix B 

Derivations for the Global 

Autoregressive Model 

The global autoregressive model outlined in Chapter 3 is provided below. If yitj is the log 

price of the jth. sale of the ith house, 

(B.l) 

where e^i ~ AT (0, . ^ 2 I, £jj ~ jV I 0, 1 .a—- I, and all e^j are independent. The 

parameters in this model are: 9 = {/3, </>, a^} for a total of 79 parameters since T = 77. 

The MLEs are computed using the coordinate ascent algorithm. The derivations are given 

in Sec B.l and the observed information matrix is provided in Sec B.2. 

107 



www.manaraa.com

B.l MLE Derivations 

Recall that r = 1^f 2 and for the updating functions for r and <f>, we can simplify the log-

likelihood function by using the adjusted log prices Wij — yij — (3t{i,j)- The log likelihood 

function is: 

1 y - y > (yij ~ /%,j) ~ </>7('J) (yij-i - % j - p ) ) 2 

2 r 2 2 ^ 2 ^ ! _ ^27(i,j) 

where N is the number of observations. Below are the derivations for updating the param­

eters. 
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U p d a t e for /3i, ..., 0T 

Each time effect, /3t, is updated individually: 

H = ^ E i _ ̂ (M) (^ - ^ - ^ fr"-1 - &M-^ ) 
i:t(ij)=t 

1 y -
T 2 , ^ t 1 

(jfliij) 

•.t(i,j-l)=t 
^27(i,i) \ ^ - &W) - ^ j ) fad-* - M 

0 = 

+^ E (i/u-A) 
i:t(i,l)=t 

E w,i-AM(M) = ti-& E I ^ K 
i:t(i,l)=* i:t(i,j)=t 

J>1 

i : t(i , j-l)=t Y i:t(i,j)=t 

E T T ^ ( ^ - % . ; > - * 7 W , ^ - I ) 
i:t(r,j-l)=t 

A 

/ 

( E w.i+ E ! _ Jw,,-) ( ^ - ^ O -̂1 - %J-D) ) 
\ i : t ( i , l )=t i:t(i,j)=t V \ 

i : t( i , j- l)=t 

A7(* j ) , 

where | • | is the cardinality of a set. 
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Update for rl 

The expression for r 2 is: 

dl N 1 
I Ji 

2r 2 + 2 ( r 2 ) 2 ^ ^ • 1 + 2 ( r 2 ) 2 ^ ^ 
[w. U - (jF^Wij-!)' 

v ' 1=1 V y i=l j=2 r 

0 = 

r = 

- ivr2+E <i+E E ^ ' ~ ^ V j - l ) 2 

i=i j=i j=2 
1 _ (j)2l{i,3) 

1 
iv 

/ i Ji 

E«t+EE 
i = l j = 2 

K j , _ /A7(i,j) w y - i ) ' 

i = i 
1 _ ^27(ij) 

Function for 

An explicit expression for <j> cannot be derived. Instead, the zero of the partial derivative 

of the log likelihood function with respect to <f> should be estimated or the log likelihood 

function should be directly maximized with respect to (f>. 
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l ^ A - 2 7 ( z , j ) < / . 2 ^ J ) - 1 

E E ^ 
= 1 j=1 Y 

I Ji (Wid - 07(ij)) ( 7 ( j , fiWij-K/PM-1) 

2 r 2 Z ^ Z ^ ! _ A27(i,j) 
i=l i=2 r 

2 A ^ K r ^ ^ - i ) 
2 r 2 Z ^ Z . h_jfrlij)\* V{l,J)0 

0 = 
i=l j=2 

/ J; , ! y-y-Ki-^7 ( i J ) wM-i) (T(*, i K i - i ^ - 1 ) 
i=l J=2 

1 - 027(<J) 

i=l i=2 V 

- ^ V j - l " 
027(»,i) 7(i,i)027( l J ) - i 

B.2 Computing the Observed Information matrix 

The observed information matrix, I, is used to estimate the asymptotic variance-covariance 

matrix of the parameters. This matrix is given by the expression below: 

( * ) 

d2l HV1 
deed' 

where 8 and 6' are arbitrary parameters. Expressions for the second-order partial derivatives 

are given next. 
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Appendix C 

Computational Methods 

In this appendix two procedures to reduce matrix inversions for large data sets are described. 

We start with residual regression which is used to estimate parameters for regressions where 

the categorical variable has a large number of groups. In Sec. C.2, we outline the conjugate 

gradient method which can be used to solve systems of the form A x = b where A is a 

large, sparse matrix. We use this algorithm when computing the indices for the S&P/Case-

Shiller® method. 

C.l Residual Regression 

When a regression model has both a large number of observations and groups of a categorical 

variable, using ordinary least squares may be infeasible due to the computational require­

ments of manipulating and inverting large matrices. Residual regression can be used in such 

situations. We use the procedure (notation included) outlined by Chamberlain (1996). His 

117 



www.manaraa.com

procedure applies the method to a balanced fixed effects models with additional regressors. 

We extend the method here for unbalanced fixed effects models where there are two fixed 

effects but only one with a large number of categories. Specifically, we wan to fit the model: 

Vi,j,k = n + ai + /3j + ei}j}k (C.l) 

where y is the response vector, and /x, a, and j3 are fixed effects. Finally, e ~ J\f (0, a^Ijv) 

where I is the identity matrix of dimension N, the number of observations. Assume that 

the fixed effect a has a large number of categories; for our use, a are the individual house 

effects. We rewrite the model as follows: 

y = Aa + B 
P 

+ e (C.2) 

where A and B are the design matrices that code the indicator variables for the parameters 

a and \j3 / / ] ' . 

T h e Res idua l Regress ion P r o c e d u r e 

1. Compute the following: 

y 

y 

B 

B 

= y-tA'A^A'y 

= y-fi 

= A - - ( A ' A ) " 1 A ' B 

= B - B i 

where yi and Bj is vector of average value of the response variable and dummy variable 

vectors by the categories of a. 
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2. Now, to obtain regression estimates for //, and (3, 

(B'B)_1B'J 

3. As a final step, compute a : 

a = Yi ~ Bj 

(C.3) 

(C.4) 

C.2 Conjugate Gradient Method 

We need to use special techniques to solve A x = b where A is a large, sparse matrix. For 

such matrices, it is important to preserve the zeros in the matrix. The conjugate gradient 

method is best for this setting as we avoid inverting the matrix entirely [18, p. 105]. This 

method iteratively solves Ax = b given a starting value x^ and is outlined next. 

T h e Conjugate Gradient M e t h o d 

1. Initialize x^ and set a tolerance level e. 

2. Set k = 0; r™ =b-AxW; s™ = A'r^; p(fc) = # ) ; and 7W = \\s{k)\\l. 

3. If 7 ^ < e, set x = x^ and stop. 

4. Set gW = ApW. 

5. Compute a^> — 777—777-
nW 
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6. Update: 

(a) x(fc+1)=x(fc) + a(fcVfc), 

(b) r ( f c + 1 ) = r ( f c ) - a ( f c V f c ) , 

(c) s(fc+1)=AV(fc+1), 

(d) 7(*+i) = ||s(
fc+1)||2, and 

(e) P ^ = s^V + 2 ^ 1 . 

7. Set k to be fc + 1 and return to Step 3. 

We can apply this method to the first and third stages of the S&P/Case-Shiller® method. 

The inputs are: 

Stage 1. A = Z'X and 6 = Z'Y 

Stage 3. A = Z'n~lX and b = Z'Cl^Y. 
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Appendix D 

Additional Plots for Global Model 

The plots in this appendix correspond to the results presented in Chapter 5. Figs. D.l- D.4 

are plots verifying the AR(1) assumption in the autoregressive model for each metropolitan 

area. The correlation between adjusted prices of sale pairs with the same gap time are 

plotted along with the estimated relationship. Correlation values with fewer than twenty 

sale pairs are marked with the triangle symbol. 

The second set of plots, Figs. D.5- D.8 are the computed indices for each model: the 

autoregressive model, S&P/Case-Shiller® method, fixed effects model, mixed effects model, 

and a separately constructed mean price index. 
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ure D.l: AR(1) Assumption Check: Ann Arbor, Mi-Kansas City, MO 
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Figure D.2: AR(1) Assumption Check: Lexington, KY-Orlando, FL 
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gure D.3: AR(1) Assumption Check: Philadelphia, PA-Seattle, WA 
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Figure D.4: AR(1) Assumption Check: Sioux Falls, SD-Stamford, CT 
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Figure D.5: Global Indices: Ann Arbor, Mi-Kansas City, MO 
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Figure D.6: Global Indices: Lexington, KY-Orlando, FL 
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Figure D.7: Global Indices: Philadelphia, PA-Seattle, WA 
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Figure D.8: Global Indices: Sioux Falls, SD-Stamford, CT 

Sioux Falls, SD Stamford, CT 

x 
CD 

" O 

c 

2.0 

1.5-

1.0 

0.5 

0.0 

— AR Model 
"— Mean 
— s&p/cs 
— Mixed Effects 
™~ Fixed Effects 

Jul 1985 Jan 1995 

Quarter 
Jul 2004 

X 
CD 

C 

3.0-

2.5 

2.0 

1.5 H 

1.0 

0.5 

0.0 

— AR Model 
-™ Mean 
— S&P/CS 
— Mixed Effects 
»™ Fixed Effects 

1 

Jul 1985 Jan 1995 

Quarter 
Jul 2004 

129 



www.manaraa.com

Appendix E 

Derivations for the Local 

Autoregressive Model 

In this appendix, we derive the updating functions for the local autoregressive model. Here, 

we add in a random effects term for zip code. The model to be fitted is: 

Vi,l,z = M + % , 1 ) +TZ+ £ i , M j = 1 

Vi,j,z = M + Pt(i,j) +Tz + < P I J ) {Vi,j-l,z ~ V - Pt{i,j-l) - Tz) + £i,j,z j > 1 

where rz ^ M (0, a2
T). Moreover, ei>hz %M (o, ^ ) , e^z ^M U " ' ^ S ^ ) ' a n d a11 

€ij are independent. Finally, J^t=i n *A ~ 0 where nt is the number of sales at time t. For 

clarity, we let j3 — {//, j5\,... ; ,/3T} a n d denote 6 = (/3, of, a^, (/>). 
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For this model, the log-likelihood function is: 

N 1 Z 

1(9; y) = - _ l o g ( 2 7 r ) - - ^ l o g | V ^ | (E.2) 

2 = 1 

1 Z 

- - J](A2(y2 - Xzp)yV~l(Az(yz - Xz(3)) 
2 

2 = 1 

where N is the number of observations and VZ)2 = a^(Azlnz)(Azlnz)' + j^^diag(rz) where 

diag(y) is a diagonal matrix with elements u. Let nz be the number of observations in zip 

code z. Finally, let wz = yz — X2/3. 

E.l Updating Formulas 

Given the complexity of the models, we cannot find explicit functions for updating each 

parameter other than for /3. For the remaining three parameters, we must find the zero of 

the partial derivative function. We start with a few important identities and formulas used 

in the following derivations [22]: 

(A + B)' 

tr(AB) 

0|A| 

chc'Ax 
9x 

d (Ax + y)' C (Dx + w) 

= A' + B' 

- tr(BA) 

= | A | ^ A - -

= x'(A' + A) 

— <Tiv _i_ w V r.' A 

ax K , . . , - - . v—- . „ , — 
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where A and B are appropriately sized matrices, 8 is a parameter, /(•) is a function, and 

tr(-) is the trace of a matrix. 

Update for {/3} 

The estimates for {//, /? i , . . . , /3r-i} a r e given by: 

dl * Z r)l 1 

^ = - i E - 2 ( A ^ ) ' v ^ ( A , ( y z - X , / 3 ) ) 
2 = 1 

0 = ^ ( A z X a ) ' V - j A z y a - ^ ( A , X a ) ' V ^ A z X ^ 
2 = 1 2 = 1 

0 = E ( A z X z ) ' V ^ A , y 2 - ( E ( A 2 X 2 ) ' V - > 2 X J / 3 
2=1 \ 2 = 1 / 

P = ( E ( A Z X 2 ) ' V ^ A Z X 2 ) J ] ( A 2 X z ) ' V - i A 2 y 2 . (E.3) 
V2=l / 2 = 1 

After all of the parameters are estimated, PT — — J2t=i n$t-
nx' 
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Update for of 

To find the variance for the random effects, we first note that 7 f = (A 2 l n . J (A 2 l n z ) ' . 

This is because -j^ — tr [A~1^-]. Then, if we take the derivative with respect to a2, 

91 = -\Y,tr{V-} {Azln,){Azlnz)') da2
T 2 

2 = 1 

z 
- \ Y , - ( A , w 2 ) ' V - i ( A 2 l n J ( A z l n J ' V - , ( A 2 w 2 ) 

2 
2 = 1 

0 = Y^tr {V-}{Azlnz){Azlnz)') 
2 = 1 

z 
+ ^ - ( A 2 w 2 ) ' V - 2 ( A 2 l n J ( A 2 l n 2 ) / V ^ ( A 2 w 2 ) . (E.4) 

2 = 1 

Update for o\ 

Using the fact that —§§£• — jzhpdiag(rz), we can compute the update for the variance 

parameter in the error term: 

81 
~2 S i r {v^T^dia9(rz)) 

1 Z 1 
" 2 £ ~ I 3 A 2 (A2W,) 'V-^za 5 ( r , )V- i (A 2 w 2 ) 

2 = 1 

z 
0 = -Ytr(V-ldiag(rz))+Y(AzwzyV-ldiag(rz)V-l(Azwz). (E.5) 

2 = 1 2 = 1 
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U p d a t e for 

We will find the derivative of the log likelihood function with respect to 0 in several parts. 

To start, we compute J?z: 

dVz 

dcj) 

_ 2 (d(Azlnz)\ 2 fd(Azlr .)Y 

20a2 

(1 - 02)2 diag(rz) + 
cr2 ddiag(vz) 

1 - 02 30 ' 

Next, we compute —°SJ , z 'z |: 

(E.6) 

3 log | Vz,2 
M V 

-i9V2 

30 

tr I Vli _2 f 9{AzlnJ \ , 2 / A -i 
T V 30 ' ^ ^r lA^ln, v 9^ ; 

20af 
( 1 - 0 2 ) W ^«5(r.) + Y±£i 

a2 ddiag(rz) 

30 }• (E.7) 

Finally, we compute g!,z: 

3V: 

30 = -v; 

= -v: 

-i 9vJZ;2_v_1 
2 , 2 30 

a2 ddiag(rz)' , 20a | ^ 
+ 7:: r^GMa^r*) + 

( 1 - 0 2 ) 2 1 - 02 30 
V - l (E.8) 

Using (E.8), we can apply the product and chain rules to compute the partial derivative of 

fz{4>) = (AzYfzyVj\{Azyfz)' with respect to 0. 

30 
3A2 

w2 V- i (A,w«) + (Aaw,)'V. /^-i fdA 

30 

- ( A , w , ) ' V - i 

, 20a(
2 

30 

2 f ^ A ^ n J V , 2 , fd(Azlr 

cr2 ddiag(rz 

( 1 - 0 2 ) 2 diag(rz) + 
1 - 30 

V-J(Azw*). (E.9) 
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Putting (E.7) and (E.9) together, we obtain the desired partial derivative: 

91 _ 1yfJv-ifT2/^(A.lnJ\rA y , , /3(A,lnjV 

200-2 a-;? ddiag(rz) 
diag(rz) + (1 - 02)2 

z 
1 - 02 30 

\j: (^w*)'v-(A^} - IE(A^)'V- ( 90 
• w . 

1 z 

2 = 1 

(A,w,) 'V z .z 

+ 
20C7£

2 

;diag(rz) + 
a-2 ddiag(vz 

(1 - 02)2 »V «/ 1 _ ^2 d(p 
z 

V" 2 (A z w 2 

- ~E-{VS (* ( ^ ) (A,.J + ̂ ) (^)' 

+ diag(rz) + 
(1-02)2 
Z 

30 
qf ddiag(rz) 

1 - 0 2 30 

- E (^w.)' rrJ(A,w.) - E(A,WZ)'V- (^„ . ) 

+E 
Z = l 

(Azw,)'V M r - 1 3 ( A z l Q 
30 

+ 
20°"e ». erf ddiag(v 

(1 -02)2 
diag(rz) + 

1 - 0 2 30 

( A z l n J ' + (7?(A«lnJ 

V" z (A z w z ) 

3(A21WJ 
30 

(E.10) 

Simplifying Computations for V ^ 

Although we have reduced V into blocks, the dimension of these blocks is often too large for 

a computer to invert. It is possible to simplify the computations by exploiting the structure 

of Vz,z- To do this, we use the following identities. Let D be a diagonal matrix and I the 
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identity matrix. Then, for appropriately sized matrices U, W and vectors u and w, 

( U W ) " 1 

D + W W 

(i+uwr1 

|I + uw' 

|UW 

ufc 

= 

= 

= 

= 

w_1u_1 

D5 ( i + D"5 W W ' D ^ ) D5 

I - U ( I - W U ) _ 1 W 

1 + u'w 

|U| |W| 

|U|fc. 

Recall, that V2j2 — jz^idiag(rz) + cr^(A2 l2)(A2 l2y. If we let D 2 = •^^Idiag{xz) and 

W 2 = crTA2l2, we can write: 

v-1 = 
{T>z + {aTKzlz){aTAzlz)'y

l 

- l 

BJ I + ( D 2
2 C T T A 2 1 2 ] | D Z V T A J \ \ ( ~\ 

z (JTA.ZLZ I I Dz UT^%.ZJ.Z 
D * 

= D; I - D 2
2 a r A 2 l 

D2 

I + I D , V A , 0 (D2^<JTA21 ; 

1 - 1 

D 2
 2 C T T A 2 1 2 

\ ' T - k - l = D ; 1 - a^D;1 (A2I2) [I + a\ ( I2A2) ' D ; 1 (I2A2)] ( I 2A 2) ' D 

scalar 

= D ^ - ^ l + ^ i ^ ' D ^ ^ A , ) ] ' D ^ A . I ^ A ' D ; 1 . (E.ll) 

The final expression, (E.ll) is much simpler because the inverse of a diagonal matrix is 

simply the reciprocal of its elements. 
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We can apply the same rules to compute \ z z -

IV, 
01 

;diag{rz) + a*{Azlz)(Azlz)' 
1 -(f)2 

D2 + (arAzlz) (aTAzlz)'\ 

D | I+rDx*<TTAzlz\ I D 2 V A 1 , 

T>z\(l + a2
T{lzAz)'T>-l{lzAz)). 

Df 

(E.12) 

This is easier to compute as |DZ | is just the product of the diagonal elements. 

E.2 Deriving the BLUP 

E.2.1 The Local Autoregressive Model 

After estimating the likelihood parameters, we must compute the random effects. Using 

Henderson's (1975) notation and procedure, we derive the Best Linear Unbiased Predictors 

(BLUP) for each zip code. An introduction to BLUPs can be found in Sec. 5.4.1. The 

model, in matrix form is: 

Ay AX/3 + A Z r + Ae (E.13) 

where y is the vector of log prices, (3 the vector of time effects, and r is the vector of 

random effects. Let X and Z be the design matrices for the fixed (time) and random (zip 

code) effects respectively. As before, we let A denote the transformation matrix which 

applies the observed AR(1) process to the data. The random effects are distributed as 

r ~ M (0, ofi-z) where \z is the identity matrix of dimension Z, the number of zip codes. 

Finally, Ae ~ M (0, ^J.^ diag(r) J. Henderson's method assumes that the parameters in 
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the covariance matrices are known; however, we will be using the estimated values obtained 

from maximizing the likelihood function. 

To obtain the BLUPs, we must maximize the logarithm of the joint density of y and r 

with respect to the random effects, r [36, p. 18]. This density is: 

/ ( y , r ) = (2ir**y 
N-l 

2 

exp< 
2al 

%Iz 0 

0 r^diagir) 

A ( y - X / 3 - Z r ) 

%lz 0 

0 jXjdiagir 

A (y - X/3 - Zr ) 

where N is the number of observations. Taking the log of this density, we obtain: 

l o g / ( y , r ) = 
N - l , ,n 2x 1 , 

•—^— log (27ra2
£) - - log 

0 

1 

"2of 

0 j^dia9(r) 

Si i 

A (y - X/3 - Zr ) 

\ 

0 jzsxdiag(r) 

- l 

A (y - X/3 - Z r ) 
/ 

If we maximize the log density above with respect to r , we can drop the first two terms. 

We plug in the estimated values for /3, cj>, a2, and a2. As diag(r) and A are functions of 0, 

the estimated values of these matrices need to be plugged in as well. Ultimately, we want 
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to minimize the following function. 

9(T) 
T 

A (y - X3 - Z T ) 

%T'\ZT 

l 

0 

0 

^pdiagir 

- l r 

A (y - XP - Zr ) 

+ ( l - <£2) (A (y - X0 - Z r ) ) ' diag-1 (r) (A (y - X£ - Z r ) ) . 

where diag*1 (r) is the inverse of the diagonal matrix (the reciprocal of the diagonal ele­

ments). We take the partial derivative of (E.14) with respect to r next: 

dg_ = 2a|r,j 
z - 2 ( l - 02) (A (y - X0 - Zr^'diag-1 (r) (AZ) 

0 = | | T ' I Z - ( l - ^2) ( ( A (y - X ^ ) ) ' - ( A Z T ) ' ) dia^"1 (r) (AZ). 

Finally, we solve for r : 

A 2 

1 - <̂ 2) (A (y - Xty'diag-1 (f) (AZ) = | § r ' l z + ( A Z T ) ' diag'1 (f) (AZ). 

And the BLUP is: 

• A 0 

| § I Z + (l - 02) ( A Z ) ' ^ - 1 (r) (Az) 

( l - ft) (AZYdiag-1 (r) (A (y - X^) ) ' 

- l 

In block form, the BLUP is: 

A 2 

?f + ( l - ^ ) (A . l ^ ' d i a^ - 1 (rz) (A*l*) 

( l - 02) (A212) ' ^a*?"1 (rz) (Azw2) 

(E.14) 

(E.15) 
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E.2.2 The Local Mixed Effects Model 

Recall the mixed effects model described in Sec. 7.2.1: 

y = X/3 + W a + Z r + e (E.16) 

where 

a 

M 

( 

V 

0 

0 

0 

•> 0 

0 

0 

0 

0 

0 

IN J 

Let X , W , and Z be the design matrices for the time effects, house effects, and zip code 

effects respectively. We need to estimate the BLUPs for both a and r . As in the previous 

section, we use Henderson's method to obtain the formulas. 

For the model in (E.16), the log density for y, a and r is: 

l o g / ( y , T , a ) = - — — l0g(27R7j - - l o g 

£l/ 
0 

0 

0 0 

kz o 
£ 

0 IJV 

1 
OL 

y - X/3 - W a - Z r 

4l/ 
0 

0 

0 0 

0 

0 

IJV 

a 

y - X/3 - W a - Z r 
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Taking the partial derivative with respect to /3, a , and r , we have: 

^ | ^ = - 2 ( y - X / 3 - W a - Z T ) ' X 

d log / 2a,2 

da CJ2 

£ a ' I 7 - 2 (y - X/3 - W a - Z T ) ' W 

l̂i = ^ - 2 ( y - ^ - W a - Z r ) ' Z . 

Finally, we set the partial derivatives to zero and solve for the unknowns. To calculate the 

BLUPs, iterate through the following expressions until stable estimates are reached: 

0 = (X'X) x X ' (y - W a - Zf) 
r2 ( 2 \ —x 

% I / + W W J W (y - X/3 - Zf 

( 2 \ —1 

^|IZ + Z'Z J Z' (y - X/9 - Wa) 
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Appendix F 

Additional Plots for Local Model 

The complete set of plots for the local autoregressive model are contained in this appendix. 

Figs. F . l - F.4 are the AR(1) verification plots. Figs. F.5- F.8 are the index plots. 
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Figure F.l: Local AR(1) Assumption Check: Ann Arbor, Mi-Kansas City, MO 
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Figure F.2: Local AR(1) Assumption Check: Lexington, KY-Orlando, FL 
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Figure F.3: Local AR(1) Assumption Check: Philadelphia, PA-Seattle, WA 
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Figure F.4: Local AR(1) Assumption Check: Sioux Falls, SD-Stamford, CT 
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Figure F.5: Local Indices: Ann Arbor, Mi-Kansas City, MO 
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Figure F.6: Local Indices: Lexington, KY-Orlando, FL 
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Figure F.7: Local Indices: Philadelphia, PA-Seattle, WA 
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Figure F.8: Local Indices: Sioux Falls, SD-Stamford, CT 
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